当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics
Nature Communications ( IF 16.6 ) Pub Date : 2021-09-17 , DOI: 10.1038/s41467-021-25788-w
Jose L Sanchez Noriega 1 , Nicholas A Chartrand 2 , Jonard Corpuz Valdoz 2 , Collin G Cribbs 2 , Dallin A Jacobs 2 , Daniel Poulson 2 , Matthew S Viglione 1 , Adam T Woolley 2 , Pam M Van Ry 2 , Kenneth A Christensen 2 , Gregory P Nordin 1
Affiliation  

Traditional 3D printing based on Digital Light Processing Stereolithography (DLP-SL) is unnecessarily limiting as applied to microfluidic device fabrication, especially for high-resolution features. This limitation is due primarily to inherent tradeoffs between layer thickness, exposure time, material strength, and optical penetration that can be impossible to satisfy for microfluidic features. We introduce a generalized 3D printing process that significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer. Here we demonstrate component miniaturization in conjunction with a high degree of integration, including 15 μm × 15 μm valves and a 2.2 mm × 1.1 mm 10-stage 2-fold serial diluter. These results illustrate our approach’s promise to enable highly functional and compact microfluidic devices for a wide variety of biomolecular applications.



中文翻译:

用于高度小型化和集成微流体的空间和光学定制 3D 打印

基于数字光处理立体光刻 (DLP-SL) 的传统 3D 打印在应用于微流体器件制造时存在不必要的限制,尤其是对于高分辨率特征。这种限制主要是由于层厚度、曝光时间、材料强度和光学穿透性之间固有的权衡,而微流体特征不可能满足这些固有的权衡。我们引入了一种通用的 3D 打印工艺,该工艺显着扩展了可访问的空间分布光学剂量​​参数空间,从而能够在不提高 3D 打印机分辨率的情况下制造更高分辨率的 3D 组件。在这里,我们展示了组件小型化与高度集成的结合,包括 15 μm × 15 μm 阀门和 2.2 mm × 1.1 mm 10 级 2 倍串联稀释器。这些结果说明了我们的方法有望为各种生物分子应用提供功能强大且紧凑的微流体装置。

更新日期:2021-09-17
down
wechat
bug