当前位置: X-MOL 学术J. Aerosp. Inf. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gramian-Aware Control Approach for Atmospheric Gust Harvesting
Journal of Aerospace Information Systems ( IF 1.5 ) Pub Date : 2021-09-16 , DOI: 10.2514/1.i010951
Utsav Saxena 1 , Michael R. Dorothy 2 , Imraan A. Faruque 3
Affiliation  

Micro-aerial vehicles (MAVs) lack the endurance times demanded by typical mission applications, and previous work to minimize flight path disturbances has also quantified their high atmospheric sensitivities. This study introduces an approach to modulate the sensitivity through real-time parameter variation that translates into a net energy gain of the vehicle. By applying a control-theoretic disturbance sensitivity framework and observability gramian via a “gust capture metric,” the formulation modulates vehicle gust response to sensed favorable (or unfavorable) vertical gusts. The approach is implemented in a nonlinear simulation and an experimental test environment for a representative 21 g MAV. These results include the development of a system-identified MAV flight dynamics model and the development of an experimental facility to provide automated, repeatable indoor flight tests over a gust field. Nonlinear model simulation indicates that the control law provides altitude gain over an idealized gust field, consistent with theoretical analysis. The experimental flight facility was equipped with a gust field generation capability, and its velocity and turbulence intensity distribution was quantified. The experimental flight tests evaluating altitude gain under vehicle controller modification show agreement with theoretical and simulation results and indicate the importance of turbulence distribution in atmospheric gust harvesting experiments.



中文翻译:

大气阵风收集的 Gramian-Aware 控制方法

微型飞行器 (MAV) 缺乏典型任务应用所需的续航时间,之前为尽量减少飞行路径干扰所做的工作也量化了它们的高大气敏感性。本研究介绍了一种通过实时参数变化来调节灵敏度的方法,该变化转化为车辆的净能量增益。通过“阵风捕获度量”应用控制理论干扰灵敏度框架和可观测性格拉姆,该公式将车辆阵风响应调节到感知到的有利(或不利)垂直阵风。该方法是在非线性模拟和具有代表性的 21 g MAV 的实验测试环境中实现的。这些结果包括开发系统识别的 MAV 飞行动力学模型和开发实验设施,以在阵风场上提供自动化、可重复的室内飞行测试。非线性模型仿真表明控制律提供了理想化阵风场上的高度增益,与理论分析一致。实验飞行设施配备了阵风场产生能力,其速度和湍流强度分布被量化。在车辆控制器修改下评估高度增益的实验飞行测试表明与理论和模拟结果一致,并表明湍流分布在大气阵风收集实验中的重要性。非线性模型仿真表明控制律提供了理想化阵风场上的高度增益,与理论分析一致。实验飞行设施配备了阵风场产生能力,其速度和湍流强度分布被量化。在车辆控制器修改下评估高度增益的实验飞行测试表明与理论和模拟结果一致,并表明湍流分布在大气阵风收集实验中的重要性。非线性模型仿真表明控制律提供了理想化阵风场上的高度增益,与理论分析一致。实验飞行设施配备了阵风场产生能力,其速度和湍流强度分布被量化。在车辆控制器修改下评估高度增益的实验飞行测试表明与理论和模拟结果一致,并表明湍流分布在大气阵风收集实验中的重要性。

更新日期:2021-09-17
down
wechat
bug