当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magneto- and opto-stimuli responsive nanofibers as a controlled drug delivery system
Nanotechnology ( IF 3.5 ) Pub Date : 2021-10-06 , DOI: 10.1088/1361-6528/ac2700
Aihik Banerjee 1 , Tanvi Jariwala 1 , Youn-Kyung Baek 2 , Dung Thi Hanh To 3 , Youyi Tai 1 , Junze Liu 1 , Hyle Park 1 , Nosang V Myung 3 , Jin Nam 1
Affiliation  

The drawbacks of conventional drug administration include repeated administration, non-specific biodistribution in the body’s systems, the long-term unsustainability of drug molecules, and high global cytotoxicity, posing a challenge for the efficient treatment of chronic diseases that require varying drug dosages over time for optimal therapeutic efficacy. Most controlled-release methods encapsulate drug molecules in biodegradable materials that dissolve over time to release the drug, making it difficult to deliver drugs on a schedule. To address these limitations, we developed a magneto-, opto-stimuli responsive drug delivery system based on functionalized electrospun nanofibers loaded with superparamagnetic iron oxide nanoparticles (SPIONs). We exploited the Nel relaxation effect of SPIONs, where heat generated from vibrating SPIONs under exogenously applied magnetic fields or laser illumination induced structural changes of the thermo-sensitive nanofibers that encapsulate the particles. We showed that this structural change of nanofibers is the governing factor in controlling the release of dye molecules, used as a model drug and co-encapsulated within the nanofibers. We also showed that the degree of nanofiber structural change depends on SPION loading and duration of stimulation, demonstrating the tunability of the drug release profile. Overall, we demonstrated the potential of SPION-embedded thermoplastic nanofibers as an attractive platform for on-demand drug delivery.



中文翻译:

磁刺激和光刺激响应纳米纤维作为受控药物输送系统

常规给药的缺点包括重复给药、在人体系统中的非特异性生物分布、药物分子的长期不可持续性以及高全局细胞毒性,对需要随时间变化的药物剂量的慢性疾病的有效治疗提出了挑战以获得最佳治疗效果。大多数控释方法将药物分子封装在可生物降解的材料中,这些材料会随着时间的推移溶解以释放药物,从而难以按时交付药物。为了解决这些限制,我们开发了一种基于功能化电纺纳米纤维的磁、光刺激响应药物递送系统,该纳米纤维负载有超顺磁性氧化铁纳米粒子 (SPION)。我们利用了 SPION 的 Nel 松弛效应,其中,在外加磁场或激光照射下振动 SPION 产生的热量会引起封装颗粒的热敏纳米纤维的结构变化。我们表明,纳米纤维的这种结构变化是控制染料分子释放的控制因素,染料分子用作模型药物并共同封装在纳米纤维内。我们还表明,纳米纤维结构变化的程度取决于 SPION 负载和刺激持续时间,证明了药物释放曲线的可调性。总体而言,我们展示了嵌入 SPION 的热塑性纳米纤维作为按需给药的有吸引力的平台的潜力。我们表明,纳米纤维的这种结构变化是控制染料分子释放的控制因素,染料分子用作模型药物并共同封装在纳米纤维内。我们还表明,纳米纤维结构变化的程度取决于 SPION 负载和刺激持续时间,证明了药物释放曲线的可调性。总体而言,我们展示了嵌入 SPION 的热塑性纳米纤维作为按需给药的有吸引力的平台的潜力。我们表明,纳米纤维的这种结构变化是控制染料分子释放的控制因素,染料分子用作模型药物并共同封装在纳米纤维内。我们还表明,纳米纤维结构变化的程度取决于 SPION 负载和刺激持续时间,证明了药物释放曲线的可调性。总体而言,我们展示了嵌入 SPION 的热塑性纳米纤维作为按需给药的有吸引力的平台的潜力。

更新日期:2021-10-06
down
wechat
bug