当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
Nature Communications ( IF 16.6 ) Pub Date : 2021-09-16 , DOI: 10.1038/s41467-021-25733-x
F Valmorra 1 , K Yoshida 2 , L C Contamin 1 , S Messelot 1 , S Massabeau 1 , M R Delbecq 1 , M C Dartiailh 1 , M M Desjardins 1 , T Cubaynes 1 , Z Leghtas 1 , K Hirakawa 2 , J Tignon 1 , S Dhillon 1 , S Balibar 1 , J Mangeney 1 , A Cottet 1 , T Kontos 1
Affiliation  

The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics.



中文翻译:

碳纳米管量子点中真空场诱导的太赫兹传输间隙

在最基本的层面上控制光-物质相互作用已成为量子技术的重要资源。在太赫兹范围内实现此类接口仍然是一个突出的问题。在这里,我们将捕获在碳纳米管量子点中的单个电子耦合到太赫兹谐振器。由此产生的光-物质相互作用达到深强耦合状态,仅通过太赫兹谐振器的真空波动在碳纳米管中产生太赫兹能隙。这直接通过传输测量得到证实。这种现象与原子物理学中自发发射抑制的精确对应物打开了使用电流读取非经典光状态的途径。这将是太赫兹量子光学特别有用的资源和前景。

更新日期:2021-09-16
down
wechat
bug