当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Ordered Porous Hybrid of ZnSe/N-doped Carbon with Anomalously High Na+ Mobility and Ultrathin Solid Electrolyte Interphase for Sodium-Ion Batteries
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2021-09-14 , DOI: 10.1002/adfm.202106194
Xueying Li 1 , Zhiyuan Han 1 , Wenhua Yang 1 , Qiang Li 1 , Hongsen Li 1 , Jie Xu 1 , Hongliang Li 2 , Bing Liu 1 , Haiguang Zhao 1 , Shandong Li 1 , Xia Wang 1 , Xing‐Long Wu 3, 4
Affiliation  

Transition metal selenides have been widely used in alkali metal ion batteries owing to their high specific capacities and low cost. However, their reaction kinetics and structural stability are usually poor during cycling, along with ambiguous differences in Li/Na/K-storage behaviors. Herein, it is revealed that ZnSe possesses better Na+-diffusion kinetics (including lower diffusion barrier, smaller activation energy, and higher diffusion coefficients) in comparison with Li+ and K+, as evidenced by theoretical calculations and electrochemical studies. The architectural designs of ZnSe-based anode, including nitrogen-doped carbon (N,C) and 3D ordered hierarchical pores (3DOHP) to form a 3DOHP ZnSe@N,C hybrid combined with regulating solid electrolyte interphase (SEI), significantly enhance Na+ reaction kinetics and accommodate volume changes. The resulting 3DOHP ZnSe@N,C electrodes exhibit outstanding rate capability and good cycling stability (241.6 mAh g−1 in sodium-ion batteries (SIBs) at 10 A g−1 after 800 cycles), originating from improved electrical conductivity and shortened ion diffusion paths, accompanied by ultrathin and stable SEI with less Na2CO3/NaF in organic components and boosted Na2Se adsorption as sodiation. Moreover, the Na-storage mechanism in 3DOHP ZnSe@N,C hybrid is further revealed by in situ studies. Accordingly, this study provides a new perspective for designing high-performance electrode materials for SIBs.

中文翻译:

用于钠离子电池的具有异常高 Na+ 迁移率和超薄固体电解质界面的 ZnSe/N 掺杂碳的 3D 有序多孔混合体

过渡金属硒化物因其高比容量和低成本而被广泛应用于碱金属离子电池中。然而,它们在循环过程中的反应动力学和结构稳定性通常很差,并且锂/钠/钾的储存行为也存在不明确的差异。在此,表明与 Li +和 K +相比,ZnSe 具有更好的 Na + -扩散动力学(包括更低的扩散势垒、更小的活化能和更高的扩散系数),正如理论计算和电化学研究所证明的那样。ZnSe 基负极的结构设计,包括氮掺杂碳 (N,C) 和 3D 有序分层孔 (3DOHP),形成 3DOHP ZnSe@N,C 杂化结合调节固体电解质界面 (SEI),显着增强了 Na +反应动力学并适应体积变化。所得的 3DOHP ZnSe@N,C 电极表现出优异的倍率性能和良好的循环稳定性(在 800 次循环后,钠离子电池(SIBs)在 10 A g -1 下为241.6 mAh g -1),这源于提高的导电性和缩短的离子扩散路径,伴随着超薄且稳定的 SEI,Na 2 CO 3较少/NaF 在有机组分中,并以钠化作用促进 Na 2 Se 吸附。此外,原位研究进一步揭示了 3DOHP ZnSe@N,C 杂化物中的 Na 存储机制。因此,这项研究为设计用于SIBs的高性能电极材料提供了新的视角。
更新日期:2021-09-14
down
wechat
bug