当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of lithium ion battery ageing by combined impedance spectroscopy, functional microscopy and finite element modelling
Journal of Power Sources ( IF 9.2 ) Pub Date : 2021-09-15 , DOI: 10.1016/j.jpowsour.2021.230459
Nawfal Al-Zubaidi R-Smith 1 , Michael Leitner 1 , Ivan Alic 1 , David Toth 1 , Manuel Kasper 2 , Martina Romio 3 , Yuri Surace 3 , Marcus Jahn 3 , Ferry Kienberger 2 , Andreas Ebner 1 , Georg Gramse 1, 2
Affiliation  

Development of future battery generations and quality control of current lithium-ion battery (LIB) systems require reliable techniques for the characterization of the complex dynamic processes in batteries. Electrochemical impedance spectroscopy (EIS) is an established tool for the electrochemical characterization of LIBs and the related ageing processes. Nevertheless, ensuring a reliable interpretation and validation of the impedance data remains challenging. Here we show how EIS complemented by microscopy data can be successfully used to follow battery ageing. We connect data from both methods in an electrochemical finite element model (FEM) to extract changes of intrinsic battery parameters, such as double layer capacitance, film resistance, exchange current density, and particle radii. Ageing mechanisms induced by cycling and temperature are investigated by EIS on commercial cells. Postmortem analysis of the anode and cathode electrodes is carried out to determine their initial micrometric and nanometric structure and to independently investigate morphological and electrical changes induced by ageing. While the obtained initial structural dimensions reduce drastically the number of adjustable parameters in the FEM model, which enables us to follow battery ageing processes noninvasively through the EIS spectra, the microscopy results of the aged cells prove independently the validity of the here presented approach.



中文翻译:

结合阻抗谱、功能显微镜和有限元建模评估锂离子电池老化

未来电池世代的发展和当前锂离子电池 (LIB) 系统的质量控制需要可靠的技术来表征电池中的复杂动态过程。电化学阻抗谱 (EIS) 是用于 LIB 电化学表征和相关老化过程的成熟工具。然而,确保阻抗数据的可靠解释和验证仍然具有挑战性。在这里,我们展示了 EIS 辅以显微镜数据如何成功地用于跟踪电池老化。我们在电化学有限元模型 (FEM) 中连接两种方法的数据,以提取电池固有参数的变化,例如双层电容、薄膜电阻、交换电流密度和粒子半径。通过 EIS 在商业电池上研究由循环和温度引起的老化机制。对阳极和阴极电极进行死后分析,以确定它们的初始微米和纳米结构,并独立研究老化引起的形态和电学变化。虽然获得的初始结构尺寸大大减少了 FEM 模型中可调参数的数量,这使我们能够通过 EIS 光谱无创地跟踪电池老化过程,但老化电池的显微镜结果独立地证明了此处提出的方法的有效性。对阳极和阴极电极进行死后分析,以确定它们的初始微米和纳米结构,并独立研究老化引起的形态和电学变化。虽然获得的初始结构尺寸大大减少了 FEM 模型中可调参数的数量,这使我们能够通过 EIS 光谱无创地跟踪电池老化过程,但老化电池的显微镜结果独立地证明了此处提出的方法的有效性。对阳极和阴极电极进行死后分析,以确定它们的初始微米和纳米结构,并独立研究老化引起的形态和电学变化。虽然获得的初始结构尺寸大大减少了 FEM 模型中可调参数的数量,这使我们能够通过 EIS 光谱无创地跟踪电池老化过程,但老化电池的显微镜结果独立地证明了此处提出的方法的有效性。

更新日期:2021-09-15
down
wechat
bug