当前位置: X-MOL 学术Green Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting NH3 production from nitrate electroreduction via electronic structure engineering of Fe3C nanoflakes
Green Chemistry ( IF 9.8 ) Pub Date : 2021-08-17 , DOI: 10.1039/d1gc01913a
Yuanyuan Wang 1 , Linlin Zhang 1 , Yongjian Niu 1 , Dong Fang 1 , Jiao Wang 1 , Qingxiao Su 1 , Cheng Wang 1
Affiliation  

Clear structure–performance relationships are helpful for the design of efficient catalysts and the understanding of reaction mechanisms. The electrocatalytic nitrate reduction reaction (NO3RR) offers a sustainable route to ammonia (NH3) synthesis and nitrate mitigation. However, it suffers from poor nitrate adsorption, low NH3 selectivity and sluggish reaction kinetics. Herein, N-doped carbon nanosheets supported Fe3C nanoflakes featuring large surface areas (860.024 m2 g−1) were prepared. Their NO3RR performances showed volcano-like relationships with the Fe3+/Fe2+ ratios and d-band centers. At −0.5 V, the NH3 yield, faradaic efficiency, selectivity and current density reached 1.19 mmol h−1 mg−1, 96.7%, 79.0% and 85.6 mA cm−2, respectively, exceeding most reported results. Such exceptional performances mainly originated from the optimized electronic structures that boosted nitrate adsorption and reaction kinetics (Tafel slope: 56.7 mV dec−1). Mechanistic investigations revealed a NO3 → NO2 → NH3 reaction pathway with the chemical process following the fast electron transfer process as the rate-determining step.

中文翻译:

通过 Fe3C 纳米薄片的电子结构工程促进硝酸盐电还原产生 NH3

清晰的结构-性能关系有助于设计高效催化剂和理解反应机理。电催化硝酸盐还原反应 (NO 3 RR) 提供了合成氨 (NH 3 ) 和减少硝酸盐的可持续途径。然而,它存在硝酸盐吸附差、NH 3选择性低和反应动力学缓慢的问题。在此,制备了具有大表面积(860.024 m 2 g -1)的N掺杂碳纳米片负载的Fe 3 C纳米薄片。它们的 NO 3 RR 性能与 Fe 3+ /Fe 2+表现出类似火山的关系比率和 d 波段中心。在-0.5 V 时,NH 3产率、法拉第效率、选择性和电流密度分别达到1.19 mmol h -1 mg -1、96.7%、79.0% 和85.6 mA cm -2,超过了大多数报道的结果。这种卓越的性能主要源于优化的电子结构,可提高硝酸盐吸附和反应动力学(Tafel 斜率:56.7 mV dec -1)。机理研究揭示了 NO 3 - → NO 2 - → NH 3反应途径,其中快速电子转移过程之后的化学过程作为速率决定步骤。
更新日期:2021-09-15
down
wechat
bug