当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Caustic Soda Production, Energy Efficiency, and Electrolyzers
ACS Energy Letters ( IF 22.0 ) Pub Date : 2021-09-15 , DOI: 10.1021/acsenergylett.1c01827
Amit Kumar 1 , Fengmin Du 1, 2 , John H. Lienhard 1
Affiliation  

Approximately 99.5% of caustic soda worldwide is produced through the traditional chlor-alkali process which simultaneously generates chlorine and hydrogen gas. The wider spectrum of caustic production technologies (Figure 1) includes the chlor-alkali membrane process, the chlor-alkali diaphragm process, bipolar membrane electrodialysis (EDBM), and direct electrosynthesis (DE). Both of the chlor-alkali processes produce H2 and Cl2 in addition to NaOH, while EDBM and DE produce HCl in addition to NaOH. Based on these underlying reactions, all of the methods can produce the same maximum amount of NaOH per kg of 7% w/w NaCl brine. Energy usage is one for the most important factors for caustic production and makes up a significant portion of the variable cost (Figure 2). The minimum energy required for each method can also be determined from the underlying chemical reaction.(4) EDBM and DE have lower minimum energy requirements (0.65–0.81 kWh/kg NaOH for the former;(4) and around 1.38 kWh/kg NaOH for the latter, estimated using the cell voltages in Figure 1) than the chlor-alkali processes (1.56–1.64 kWh/kg NaOH(4)). This indicates that if all methods had similar efficiencies, EDBM and DE would use less energy to produce NaOH than the chlor-alkali processes. In practice, the chlor-alkali membrane process consumes 2.10–2.15 kWhe/kg NaOH of electrical energy and 0.128–0.196 kWht/kg NaOH of thermal energy.(4) The chlor-alkali diaphragm process tends to use less thermal energy (0.038–0.047 kWht/kg) at the cost of slightly higher electrical energy usage (1.94–2.51 kWhe/kg NaOH). Considering only the electrical part (note that the thermal energy is of lower thermodynamic quality and also cheaper), the energy efficiency of conventional chlor-alkali processes therefore amounts to around 75%. As a more novel process, EDBM has been reported to consume in the range of 1.8–3.6 kWhe/kg NaOH of electrical energy (setups used in research),(5) thus having an energy efficiency of around 40%. Despite having the thermodynamic potential to require significantly less energy than the chlor-alkali process, at present, EDBM at best consumes only slightly less electrical energy than the chlor-alkali process and on average requires slightly more, although no heat energy is required. It becomes evident that more research is necessary to increase its efficiency and lower the realized energy consumption. U is the cell voltage (in V), Q the provided charge (in C), M the molar mass (40 kg/kmol for NaOH), and n the produced molar amount (in mol). Figure 1. Schematic diagram of a chlor-alkali membrane, a chlor-alkali diaphragm, a bipolar membrane electrodialysis, and a direct electrosynthesis process. The half-reactions and energy requirements are given (sources: chlor-alkali processes,(1) bipolar membrane electrodialysis,(2) direct electrosynthesis(3)). Key: A, anode; C, cathode; BP, bipolar membrane; NaOH, sodium hydroxide; HCl, hydrochloric acid. Figure 2. Theoretical and practical energy requirements of a chlor-alkali membrane, a chlor-alkali diaphragm, a bipolar membrane electrodialysis, and a direct electrosynthesis process. Theoretical numbers are taken from Thiel et al.(4) or estimated based on the theoretical voltage (for direct electrosynthesis). Practical numbers are taken from Thiel et al.(4) and Reig et al.(5) No study has yet reported on the practical energy requirements of direct electrosynthesis. No study has yet reported on the practical energy requirements of DE, necessitating further research in this area. Lower theoretical energy consumption is expected for DE than the conventional chlor-alkali process, yet the theoretical energy use is not as low as in the EDBM process as a result of the relatively higher amount of water splitting taking place. A practically attractive feature of DE could be its lower number of electrolyte chambers and membranes (in addition, the absence of BP), which potentially reduces energy consumption by lowering ohmic resistances compared to EDBM processes. At the same time, the attractiveness of the DE process will also increase if H2 is additionally a desired side product. We now direct our discussion toward the energy efficiencies of the above-mentioned caustic production processes. Table 1 compares the specific energy consumption based on theoretical and practical performance. Generally, causes of energy inefficiency (additional energy consumption relative to the thermodynamic limit) can roughly be subdivided into the following two categories:
  • Voltage efficiency: additional voltage needed beyond the thermodynamic driving force Umin (which is the difference of the thermodynamic equilibrium potentials on both half-cell reactions). Additional voltage results from various sources of overpotential (∑ηkin) as well as ohmic losses in the electrolysis cell (∑ηohm). Further losses may also be incurred, e.g., by limitations on reactant mass transport. In the case of the EDBM process, one of the major voltage losses stems from the activation barrier of water splitting (to proton and hydroxyl ions) within the bipolar membrane.(2) For DE processes, it may be expected that the major inefficiency will result from the oxygen evolution reaction (OER) on the anode, which is well known to be a kinetically strongly hindered reaction in acid media.
  • Current efficiency: additional current/charge required beyond the stoichiometry dictated by Faraday’s law, e.g., due to side reactions, shunt currents, or membrane crossover. For a typical chlor-alkali process, current inefficiencies are mainly caused by OER as a side reaction and chlorine dissolution in the anode solution (both of which reduce chlorine yield), as well as crossover of OH ions (reduces caustic yield).(6) In the case of DE, OER is the desired reaction on the anode, and chlorine evolution reaction (ClER) is the main competing reaction, which contributes to current inefficiency.(3)
Voltage efficiency: additional voltage needed beyond the thermodynamic driving force Umin (which is the difference of the thermodynamic equilibrium potentials on both half-cell reactions). Additional voltage results from various sources of overpotential (∑ηkin) as well as ohmic losses in the electrolysis cell (∑ηohm). Further losses may also be incurred, e.g., by limitations on reactant mass transport. In the case of the EDBM process, one of the major voltage losses stems from the activation barrier of water splitting (to proton and hydroxyl ions) within the bipolar membrane.(2) For DE processes, it may be expected that the major inefficiency will result from the oxygen evolution reaction (OER) on the anode, which is well known to be a kinetically strongly hindered reaction in acid media. Current efficiency: additional current/charge required beyond the stoichiometry dictated by Faraday’s law, e.g., due to side reactions, shunt currents, or membrane crossover. For a typical chlor-alkali process, current inefficiencies are mainly caused by OER as a side reaction and chlorine dissolution in the anode solution (both of which reduce chlorine yield), as well as crossover of OH ions (reduces caustic yield).(6) In the case of DE, OER is the desired reaction on the anode, and chlorine evolution reaction (ClER) is the main competing reaction, which contributes to current inefficiency.(3) Therefore, the potential directions for improving energy efficiency in the caustic production processes include optimizing the electrodes (reduce overpotentials, increase selectivity) and reducing membrane/electrolyte resistances, among other areas. These aspects are elaborated in the following paragraphs. To reduce membrane and electrolyte resistance, we believe research should be directed toward advanced system design. For the purpose of reducing ohmic losses in the electrolyte, for instance, a well-known design feature is the so-called zero-gap configuration, in which the electrodes are positioned very close to the membrane.(7) Reducing membrane-related losses can be achieved, e.g., by reducing the number of compartments in EDBM processes. DE is also predicted to consume less energy than EDBM in practice as a result of smaller membrane areas.(3) Recently, Hashemi et al. introduced a membrane-less 3D-printed microfluidic electrolyzer for water splitting and chlor-alkali processes.(8) Although energy consumption is not elaborated in the publication, ohmic losses are minimized in this type of design. The microfluidic approach is just one demonstration of potential energy efficiency improvements in future electrolyzer designs. Aiming to reduce electrode overpotentials, research has been focused on developing new materials for hydrogen evolution (e.g., Ru/WNO@C introduced by Zhang et al.;(9) metal–organic frameworks (MOFs) by Sun et al.;(10) and intermetallic Co3Mo by Shi et al.(11)) and, more critically, oxygen evolution. For instance, Ni/Co-doped defect-rich Cu-based sulfide nanorods modulate the *OH adsorption state while effectively adsorbing and isolating *H to improve OER kinetics.(12) Kumar et al.(3) pointed out the necessity of long-term stability of the OER catalyst alongside its initial high activity for successful DE processes. NiFe oxyhydroxide-, MnOx-, or NiOx-based materials have been demonstrated as suitable catalysts for OER in alkaline media.(13,14) Additionally, some research has been directed toward activity-improving defects, e.g., dopants and grain boundaries that can selectively stabilize OER intermediates.(13) In order to increase the current efficiency of DE or EDBM processes, the anode material must be designed to favor OER instead of ClER. OER is thermodynamically favored over ClER under standard conditions (1.23 vs 1.36 V), yet the potentially high chloride concentration in feed brine shifts the ClER equilibrium potential downward and weakens this difference (for instance, the equilibrium potential of ClER under chlor-alkali conditions is around 1.21 V vs SHE, see Figure 1). At the same time, OER is well known to be kinetically hindered as a four-electron process, necessitating special attention in increasing its selectivity. Ab initio kinetics and thermodynamics of ClER/OER have been studied, e.g., by Exner et al.(15) The concept of suppressing ClER has been explored by Traini et al.(16) To this day, it is well known that the selectivity toward OER is intrinsically higher at high pH,(13) yet a strongly alkaline condition may not be practically feasible on the anode due to the direct local proton production (or OH consumption; see also the reactions in Figure 1).(14) On the other hand, extremely low or high current densities favor OER;(14) however, these conditions have limited practical relevance. The most promising solution for these selectivity issues, therefore, still lies in the development of a suitable catalyst. The development of selective OER sites or chloride-blocking overlayers (e.g., via a protective MnOx layer) has been introduced and may present a viable solution toward high OER selectivity.(13) Abe et al. introduced an oxygen-deficient thin film with disordered manganese oxide nanolayers on a fluorine-doped tin oxide (FTO) electrode.(17) They measured high selectivity for OER over ClER in 0.5 M NaCl solution, obtaining a Faradaic efficiency of 87% in galvanostatic electrolysis at 10 mA cm–2. Recently, Mu et al. developed a graphite carbon anode with significantly higher OER selectivity in a DE design operating with brine compared to other anodes (e.g., Ti–Pt, Ti–Ir) operating under similar conditions.(18) For traditional chlor-alkali processes, the focus leans instead toward ClER activity and selectivity. For instance, the kinetics of the ClER in saline solution (5 M NaCl) was studied using ultrathin single-crystalline RuO2(110) films as model electrodes at various temperatures.(19) New materials (e.g., transitional metal antimonates(20)) have been proposed as viable anodes, which may (over the lifetime of the electrolyzer) have similar or improved selectivity compared with the typical dimensional-stable anodes (DSAs) based on RuTiOx. Apart from consideration of energy consumption within the electrolyzer itself, additional energy inputs are likely required for feed stream pre-treatment in any industrial process. Typically, pre-treatments involve purification and/or pre-concentration of the feed. For example, in the case of membrane chlor-alkali cells, the feed flow must consist of a nearly saturated NaCl solution with less than 20 ppb of Ca/Mg in addition to other stringent requirements (e.g., no heavy-metal ions).(2) The coupling of, say, desalination processes as a pre-concentration step would both reduce the pre-treatment effort considerably and move toward the “circular water economy” described by Brears et al.(21) To conclude, we re-emphasize the potential of EDBM and DE technologies for caustic production, primarily in consideration of their significantly improved thermodynamic limits relative to conventional chlor-alkali technology. In addition, the possibility that less pre-treatment will be required for EDBM/DE processes further reduces the potential energy consumption for the complete process train in comparison to other methods. We believe that further research on this topic should first be directed to quantitative understanding of voltage losses, including the fraction of single terms (i.e., anode/cathode kinetics, ohmic losses in the membrane/electrolyte) and current inefficiencies within EDBM/DE systems (e.g., Du et al.(22)). At the same time, since the design and development of novel OER catalysts with better activity, selectivity, and durability are expected to remain high priorities in the near future (for water electrolyzer applications), adoption and testing of these novel catalysts under EDBM/DE conditions will be highly beneficial for optimizing the performance and energy requirements of these processes. With these improvements, the low thermodynamic limits of EDBM/DE energy consumption will become significantly more attainable. Finally, advanced designs targeting increased system efficiency and scale-up of existing lab systems will pave the way for successful commercialization of these two exciting technologies. Views expressed in this Viewpoint are those of the authors and not necessarily the views of the ACS. This article references 22 other publications.


中文翻译:

烧碱生产、能源效率和电解槽

全世界大约 99.5% 的烧碱是通过传统的氯碱工艺生产的,该工艺同时产生氯气和氢气。更广泛的苛性碱生产技术(图 1)包括氯碱膜工艺、氯碱隔膜工艺、双极膜电渗析 (EDBM) 和直接电合成 (DE)。两种氯碱工艺都会产生 H 2和 Cl 2除NaOH外,EDBM和DE除NaOH外还产生HCl。基于这些潜在的反应,所有的方法都可以产生相同的最大量的 NaOH/kg 7% w/w NaCl 盐水。能源使用是碱生产的最重要因素之一,占可变成本的很大一部分(图 2)。每种方法所需的最低能量也可以从潜在的化学反应中确定。(4) EDBM 和 DE 的最低能量要求较低(前者为 0.65–0.81 kWh/kg NaOH;(4) 约 1.38 kWh/kg NaOH对于后者,使用图 1 中的电池电压估计)而不是氯碱工艺(1.56–1.64 kWh/kg NaOH(4))。这表明,如果所有方法都具有相似的效率,则与氯碱工艺相比,EDBM 和 DE 将使用更少的能源来生产 NaOH。在实践中,e /kg NaOH 电能和 0.128–0.196 kWh t /kg NaOH 热能。 (4) 氯碱隔膜工艺倾向于使用较少的热能(0.038–0.047 kWh t /kg),但成本略高电能使用量(1.94–2.51 kWh e /kg NaOH)。仅考虑电气部分(请注意,热能具有较低的热力学质量且更便宜),因此传统氯碱工艺的能效约为 75%。作为一种更新颖的工艺,据报道 EDBM 的消耗范围为 1.8-3.6 kWh e/kg NaOH 电能(研究中使用的设置),(5) 因此具有大约 40% 的能源效率。尽管具有比氯碱工艺所需能源少得多的热力学潜力,但目前,EDBM 最多只消耗比氯碱工艺略少的电能,平均需要略多一些,尽管不需要热能。很明显,需要更多的研究来提高其效率并降低实现的能耗。 U是电池电压(V),Q是提供的电荷(C),M是摩尔质量(NaOH 为 40 kg/kmol),n产生的摩尔量(以摩尔计)。图 1. 氯碱膜、氯碱隔膜、双极膜电渗析和直接电合成工艺示意图。给出了半反应和能量需求(来源:氯碱工艺,(1)双极膜电渗析,(2)直接电合成(3))。关键:A,阳极;C、阴极;BP,双极膜;NaOH、氢氧化钠;盐酸,盐酸。图 2. 氯碱膜、氯碱隔膜、双极膜电渗析和直接电合成过程的理论和实际能量需求。理论数字取自 Thiel 等人 (4) 或根据理论电压估算(用于直接电合成)。实际数字取自 Thiel 等人(4)和 Reig 等人。(5) 目前还没有关于直接电合成的实际能量需求的研究报告。目前还没有研究报告 DE 的实际能源需求,需要在该领域进一步研究。与传统的氯碱工艺相比,DE 的理论能耗预计较低,但由于发生相对较高的水分解量,因此理论能耗不如 EDBM 工艺低。DE 的一个实际吸引人的特征可能是其电解质室和膜的数量较少(此外,没有 BP),与 EDBM 工艺相比,这可能通过降低欧姆电阻来降低能耗。同时,如果H,DE过程的吸引力也会增加 目前还没有研究报告 DE 的实际能源需求,需要在该领域进一步研究。与传统的氯碱工艺相比,DE 的理论能耗预计较低,但由于发生相对较高的水分解量,因此理论能耗不如 EDBM 工艺低。DE 的一个实际吸引人的特征可能是其电解质室和膜的数量较少(此外,没有 BP),与 EDBM 工艺相比,这可能通过降低欧姆电阻来降低能耗。同时,如果H,DE过程的吸引力也会增加 目前还没有研究报告 DE 的实际能源需求,需要在该领域进一步研究。与传统的氯碱工艺相比,DE 的理论能耗预计较低,但由于发生相对较高的水分解量,因此理论能耗不如 EDBM 工艺低。DE 的一个实际吸引人的特征可能是其电解质室和膜的数量较少(此外,没有 BP),与 EDBM 工艺相比,这可能通过降低欧姆电阻来降低能耗。同时,如果H,DE过程的吸引力也会增加 与传统的氯碱工艺相比,DE 的理论能耗预计较低,但由于发生相对较高的水分解量,因此理论能耗不如 EDBM 工艺低。DE 的一个实际吸引人的特征可能是其电解质室和膜的数量较少(此外,没有 BP),与 EDBM 工艺相比,这可能通过降低欧姆电阻来降低能耗。同时,如果H,DE过程的吸引力也会增加 与传统的氯碱工艺相比,DE 的理论能耗预计较低,但由于发生相对较高的水分解量,因此理论能耗不如 EDBM 工艺低。DE 的一个实际吸引人的特征可能是其电解质室和膜的数量较少(此外,没有 BP),与 EDBM 工艺相比,这可能通过降低欧姆电阻来降低能耗。同时,如果H,DE过程的吸引力也会增加 与 EDBM 工艺相比,这可能通过降低欧姆电阻来降低能耗。同时,如果H,DE过程的吸引力也会增加 与 EDBM 工艺相比,这可能通过降低欧姆电阻来降低能耗。同时,如果H,DE过程的吸引力也会增加2另外是期望的副产物。我们现在将讨论指向上述苛性碱生产过程的能源效率。表 1 比较了基于理论和实际性能的特定能耗。一般来说,造成能源效率低下的原因(相对于热力学极限的额外能源消耗)大致可细分为以下两类:
  • 电压效率:超出热力学驱动力U min(这是两个半电池反应的热力学平衡电位之差)所需的额外电压。额外电压由各种过电位源 (∑η kin ) 以及电解槽中的欧姆损耗 (∑η ohm)。还可能招致进一步的损失,例如,由于反应物质量传输的限制。在 EDBM 过程的情况下,主要电压损失之一源于双极膜内水分解(至质子和氢氧根离子)的活化屏障。 (2) 对于 DE 过程,可能会出现主要的低效率由阳极上的析氧反应 (OER) 产生,众所周知,这是在酸性介质中的动力学强受阻反应。
  • 电流效率:超出法拉第定律规定的化学计量所需的额外电流/电荷,例如,由于副反应、分流电流或膜交叉。对于典型的氯碱工艺,电流效率低下主要是由 OER 作为副反应和阳极溶液中的氯溶解(两者都会降低氯产率)以及 OH -离子的交叉(降低苛性碱产率)引起的。 6) 在 DE 的情况下,OER 是阳极上所需的反应,析氯反应 (ClER) 是主要的竞争反应,导致电流效率低下。 (3)
电压效率:超出热力学驱动力U min(这是两个半电池反应的热力学平衡电位之差)所需的额外电压。额外电压由各种过电位源 (∑η kin ) 以及电解槽中的欧姆损耗 (∑η ohm)。还可能招致进一步的损失,例如,由于反应物质量传输的限制。在 EDBM 过程的情况下,主要电压损失之一源于双极膜内水分解(至质子和氢氧根离子)的活化屏障。 (2) 对于 DE 过程,可能会出现主要的低效率由阳极上的析氧反应 (OER) 产生,众所周知,这是在酸性介质中的动力学强受阻反应。电流效率:超出法拉第定律规定的化学计量所需的额外电流/电荷,例如,由于副反应、分流电流或膜交叉。对于典型的氯碱工艺,电流效率低下主要是由作为副反应的 OER 和阳极溶液中的氯溶解引起的(两者都会降低氯产率),——(6) 在 DE 的情况下,OER 是阳极上所需的反应,而析氯反应 (ClER) 是主要的竞争反应,这会导致电流效率低下。(3) 因此,在苛性碱生产过程中提高能源效率的潜在方向包括优化电极(降低过电位,提高选择性)和降低膜/电解质电阻等领域。这些方面将在以下段落中详细说明。为了降低膜和电解质的电阻,我们认为研究应该转向先进的系统设计。例如,为了减少电解质中的欧姆损失,众所周知的设计特征是所谓的零间隙配置,其中电极非常靠近膜。(7) 可以减少膜相关的损失,例如,通过减少 EDBM 过程中的隔室数量。由于膜面积较小,DE 在实践中也被预测比 EDBM 消耗更少的能量。(3)最近,Hashemi 等人。介绍了一种用于水分解和氯碱工艺的无膜 3D 打印微流体电解槽。 (8) 尽管该出版物中没有详细说明能耗,但在这种类型的设计中欧姆损失最小化。微流体方法只是未来电解槽设计中潜在能源效率改进的一种证明。为了降低电极过电位,研究的重点是开发用于析氢的新材料(例如,Zhang 等人介绍的 Ru/WNO@C;(9)Sun 等人的金属有机框架(MOFs);(10) ) 和金属间化合物3 Shi 等人 (11) 的 Mo,更重要的是,析氧。例如,Ni/Co 掺杂的富含缺陷的 Cu 基硫化物纳米棒可调节 *OH 吸附状态,同时有效地吸附和隔离 *H 以改善 OER 动力学。(12)Kumar 等人(3)指出长-OER 催化剂的长期稳定性以及成功的 DE 过程的初始高活性。NiFe 羟基氧化物- 、MnO x - 或 NiO x基材料已被证明是碱性介质中 OER 的合适催化剂。(13,14) 此外,一些研究已经针对提高活性的缺陷,例如可以选择性地稳定 OER 中间体的掺杂剂和晶界。(13) 在为了提高 DE 或 EDBM 工艺的电流效率,必须设计阳极材料以支持 OER 而不是 ClER。在标准条件下(1.23 对 1.36 V),OER 在热力学上优于 ClER,但进料盐水中潜在的高氯化物浓度使 ClER 平衡电位向下移动并削弱了这种差异(例如,ClER 在氯碱条件下的平衡电位为大约 1.21 V 与 SHE,见图 1)。同时,众所周知,OER 作为四电子过程在动力学上受阻,需要特别注意提高其选择性。例如,Exner 等人已经研究了 ClER/OER 的从头算动力学和热力学。(15) Traini 等人已经探索了抑制 ClER 的概念。(16) 直到今天,众所周知,选择性OER 在高 pH 值下本质上更高,(13) 但由于直接产生局部质子(或 OH消费;另请参见图 1 中的反应。(14) 另一方面,极低或极高的电流密度有利于 OER;(14) 然而,这些条件的实际相关性有限。因此,这些选择性问题最有希望的解决方案仍然在于开发合适的催化剂。已经引入了选择性 OER 位点或氯化物阻挡覆盖层(例如,通过保护性 MnO x层)的开发,并且可能为实现高 OER 选择性提供可行的解决方案。(13) Abe 等。在掺氟氧化锡 (FTO) 电极上引入了一种具有无序氧化锰纳米层的缺氧薄膜。 (17) 他们在 0.5 M NaCl 溶液中测量了 OER 的高选择性,在恒电流中获得了 87% 的法拉第效率电解电流为 10 mA cm–2 . 最近,穆等人。与在类似条件下运行的其他阳极(例如 Ti-Pt、Ti-Ir)相比,在使用盐水的 DE 设计中开发了一种具有显着更高 OER 选择性的石墨碳阳极。(18)对于传统的氯碱工艺,重点是倾斜而不是朝着 ClER 活性和选择性。例如,使用超薄单晶 RuO 2 (110) 薄膜作为不同温度下的模型电极研究了 ClER 在盐水溶液(5 M NaCl)中的动力学。(19)新材料(例如,过渡金属锑酸盐(20) ) 已被提议作为可行的阳极,与基于 RuTiO x的典型尺寸稳定阳极 (DSA) 相比,它可能(在电解槽的整个使用寿命期间)具有相似或改进的选择性. 除了考虑电解槽本身的能耗外,任何工业过程中的进料流预处理都可能需要额外的能量输入。通常,预处理包括进料的纯化和/或预浓缩。例如,对于膜氯碱电解池,除了其他严格要求(例如,不含重金属离子)外,进料流还必须由几乎饱和的 NaCl 溶液组成,其中 Ca/Mg 含量低于 20 ppb。( 2) 将海水淡化过程作为预浓缩步骤的耦合将大大减少预处理工作,并朝着 Brears 等人描述的“循环水经济”发展。(21) 总之,我们再次强调EDBM 和 DE 技术在碱生产中的潜力,主要是考虑到它们相对于传统氯碱技术显着改善的热力学极限。此外,与其他方法相比,EDBM/DE 工艺需要更少的预处理的可能性进一步降低了整个工艺流程的潜在能源消耗。我们认为,对该主题的进一步研究应首先针对电压损失的定量理解,包括单个项的分数(即阳极/阴极动力学、膜/电解质中的欧姆损失)和 EDBM/DE 系统中的电流效率低下(例如,杜等人(22))。同时,由于设计开发了具有更好活性、选择性、在不久的将来(对于水电解器应用),耐久性和耐久性预计仍将是重中之重,在 EDBM/DE 条件下采用和测试这些新型催化剂将非常有利于优化这些过程的性能和能源需求。通过这些改进,EDBM/DE 能耗的低热力学极限将变得更加容易实现。最后,旨在提高系统效率和扩大现有实验室系统规模的先进设计将为这两项激动人心的技术成功商业化铺平道路。本观点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了 22 篇其他出版物。在 EDBM/DE 条件下采用和测试这些新型催化剂将非常有利于优化这些过程的性能和能源需求。通过这些改进,EDBM/DE 能耗的低热力学极限将变得更加容易实现。最后,旨在提高系统效率和扩大现有实验室系统规模的先进设计将为这两项激动人心的技术成功商业化铺平道路。本观点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了 22 篇其他出版物。在 EDBM/DE 条件下采用和测试这些新型催化剂将非常有利于优化这些过程的性能和能源需求。通过这些改进,EDBM/DE 能耗的低热力学极限将变得更加容易实现。最后,旨在提高系统效率和扩大现有实验室系统规模的先进设计将为这两项激动人心的技术成功商业化铺平道路。本观点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了 22 篇其他出版物。旨在提高系统效率和扩大现有实验室系统的先进设计将为这两项激动人心的技术成功商业化铺平道路。本观点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了 22 篇其他出版物。旨在提高系统效率和扩大现有实验室系统的先进设计将为这两项激动人心的技术成功商业化铺平道路。本观点中表达的观点是作者的观点,不一定是 ACS 的观点。本文引用了 22 篇其他出版物。
更新日期:2021-10-08
down
wechat
bug