当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and simulation of an integrated power-to-methanol approach via high temperature electrolysis and partial oxy-combustion technology
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2021-09-14 , DOI: 10.1016/j.ijhydene.2021.04.029
David Abad 1, 2 , Fernando Vega 2 , Benito Navarrete 2 , Alfonso Delgado 1 , Emilio Nieto 1
Affiliation  

The Power to methanol (PtMeOH) approach based on water electrolysis and CO2 capture is studied. The novelties are the integration of solid oxide electrolysis, partial oxy-combustion capture technology and methanol synthesis process, and the development and validation with experimental data of a SOEC system model using Aspen Custom Modeler. Simultaneously, CO2 capture bench-scale unit and methanol synthesis process have been modeled and experimentally validated using Aspen Plus. These three systems have been thermally integrated in a final model to assess its high-performance operation. As a result, a clean, synthetic methanol is produced, which can be used as fuel or energy storage. In this lab-scale, a SOEC system of 1.2 kW and a synthetic flue gas of 7 l/min (40% CO2, 60% N2) are considered to obtain a methanol flow of 0.16 kg/h, with an overall efficiency of 29% for the integrated scenario. The SOEC system with an optimized BoP has the highest energy consumption, mainly due to water electrolysis, with 44% of total required energy. The novel power-to-methanol integrated in this work achieves around 20% reduction of the energy penalties estimated for the base case and makes use of oxygen from electrolysis for partial oxy-combustion and the water by-product of methanol synthesis in water electrolysis. The integrated model of the overall process is considered a useful tool for future works focused on further scale-up of the process.



中文翻译:

通过高温电解和部分氧燃烧技术的综合动力制甲醇方法的建模和仿真

研究了基于水电解和 CO 2捕获的甲醇发电 (PtMeOH) 方法。新颖之处在于固体氧化物电解、部分氧燃烧捕获技术和甲醇合成工艺的集成,以及使用Aspen Custom Modeler开发和验证 SOEC 系统模型的实验数据。同时,已使用Aspen Plus 对CO 2捕获实验室规模装置和甲醇合成过程进行建模和实验验证. 这三个系统已在最终模型中进行热集成,以评估其高性能操作。结果,产生了清洁的合成甲醇,可用作燃料或能量储存。在这个实验室规模中,一个 1.2 kW 的 SOEC 系统和一个 7 l/min 的合成烟气(40% CO 2, 60% N 2) 被认为可以获得 0.16 kg/h 的甲醇流量,综合方案的整体效率为 29%。优化 BoP 的 SOEC 系统能耗最高,主要是由于水电解,占总能耗的 44%。集成在这项工作中的新型动力甲醇实现了对基本情况估计的能源损失减少 20% 左右,并利用电解产生的氧气进行部分氧燃烧,并利用水电解中甲醇合成的水副产品。整个过程的集成模型被认为是未来工作的有用工具,重点是进一步扩大过程。

更新日期:2021-09-22
down
wechat
bug