当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A reactive molecular dynamics study of the hydrogenation of diamond surfaces
Computational Materials Science ( IF 3.3 ) Pub Date : 2021-09-13 , DOI: 10.1016/j.commatsci.2021.110859
Eliezer F. Oliveira 1, 2 , Mahesh R. Neupane 3 , Chenxi Li 4 , Harikishan Kannan 4 , Xiang Zhang 4 , Anand B. Puthirath 4 , Pankaj B. Shah 3 , A. Glen Birdwell 3 , Tony G. Ivanov 3 , Robert Vajtai 4 , Douglas S. Galvao 1, 2 , Pulickel M. Ajayan 4
Affiliation  

Hydrogenated diamond has been regarded as a promising material in electronic device applications, especially in field-effect transistors (FETs). However, the quality of diamond hydrogenation has not yet been established, nor has the specific orientation that would provide the optimum hydrogen coverage. In addition, most theoretical work in the literature use models with 100% hydrogenated diamond surfaces to study electronic properties, which could be unreachable experimentally. In this work, we have carried out a detailed study using fully atomistic reactive molecular dynamics (MD) simulations on low indices diamond surfaces i.e. (0 0 1), (0 1 3), (1 1 0), (1 1 3), and (1 1 1) to evaluate the quality and hydrogenation thresholds on different diamond surfaces and their possible effects on electronic properties. Our simulation results indicate that the 100% surface hydrogenation on these surfaces is hard to achieve because of the steric repulsion between the terminated hydrogen atoms. Among all the considered surfaces, the (0 0 1), (1 1 0), and (1 1 3) surfaces incorporate a larger number of hydrogen atoms and passivate the surface dangling bonds. Our results on hydrogen stability also suggest that these surfaces with optimum hydrogen coverage are robust under extreme conditions and could provide homogeneous p-type surface conductivity on the diamond surfaces, a key requirement for high-field, high-frequency device applications.



中文翻译:

金刚石表面氢化的反应分子动力学研究

氢化金刚石被认为是电子设备应用中的一种很有前途的材料,尤其是在场效应晶体管 (FET) 中。然而,金刚石氢化的质量尚未确定,也没有提供最佳氢覆盖的特定取向。此外,文献中的大多数理论工作都使用具有 100% 氢化金刚石表面的模型来研究电子特性,这在实验上是无法实现的。在这项工作中,我们使用全原子反应分子动力学 (MD) 模拟对低指数金刚石表面进行了详细研究,即 (0  0  1)、(0  1  3)、(1  1  0)、(1  1  3) , 和 (1  1 1) 评估不同金刚石表面的质量和氢化阈值及其对电子特性的可能影响。我们的模拟结果表明,由于终止氢原子之间的空间排斥,这些表面上的 100% 表面氢化很难实现。在所有考虑的表面中,(0  0  1)、(1  1  0) 和(1  1  3) 表面结合了大量的氢原子并钝化了表面悬空键。我们关于氢稳定性的结果还表明,这些具有最佳氢覆盖率的表面在极端条件下是稳健的,并且可以在金刚石表面上提供均匀的 p 型表面电导率,这是高场、高频设备应用的关键要求。

更新日期:2021-09-14
down
wechat
bug