当前位置: X-MOL 学术J. Loss Prev. Process. Ind. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrating flare gas with cogeneration system: Hazard identification using process simulation
Journal of Loss Prevention in the Process Industries ( IF 3.5 ) Pub Date : 2021-09-14 , DOI: 10.1016/j.jlp.2021.104635
Sankhadeep Sarkar 1, 2 , Noor Quddus 1 , M. Sam Mannan 1, 2 , Mahmoud M. El-Halwagi 2
Affiliation  

Flare gas integration with a cogeneration plant benefits from utilizing waste gases containing high heating value hydrocarbons as a supplemental fuel to the boilers. A key challenge in integrating flare gas with a cogeneration system is the need to ensure operational safety and satisfactory performance.

Conventional hazard identification techniques require collective team knowledge, experience, and information about the process. Because of the limited information on a new flare gas integrated cogeneration plant, unawareness of warning signals, inability to predicts specific atypical scenarios, or general limitations in organizational systems, it is possible for the evaluation team to miss potential risks associated with the process. To overcome these limitations, this paper proposes a model to identify process hazards through process simulation, sensitivity analysis, and data evaluation during the initial stages of process design. The model uses commercial software Aspen HYSYS for process simulation. In sensitivity analysis, manipulated variables are systematically selected based on scenario predictive methods, and the variations in the processes are analyzed using linear regression models to develop quantitative insights without information loss.

The model investigated the effect of variable flare gas conditions and their quality on the existing fired gas boiler. Results showed that the flare gas temperature has a nominal effect on the process. However, changes in flare gas composition - high hydrogen carryover (above 70 mol% with CH4 or above 40 mol% with C2H4) can affect the boilers radiation zone temperature and combustion profile inside the firebox. If not prevented, these events can further amplify to loss-control events such as flame impingement, firebox instability, steam explosion, and tube rupture.



中文翻译:

将火炬气与热电联产系统集成:使用过程模拟进行危险识别

火炬气与热电联产厂的整合受益于利用含有高热值碳氢化合物的废气作为锅炉的补充燃料。将火炬气与热电联产系统集成的一个关键挑战是需要确保操作安全和令人满意的性能。

传统的危害识别技术需要集体的团队知识、经验和有关过程的信息。由于有关新火炬气综合热电厂的信息有限、不了解警告信号、无法预测特定的非典型情况或组织系统的一般限制,评估团队可能会错过与该过程相关的潜在风险。为了克服这些限制,本文提出了一种模型,可以在过程设计的初始阶段通过过程模拟、敏感性分析和数据评估来识别过程危害。该模型使用商业软件 Aspen HYSYS 进行过程模拟。在敏感性分析中,根据情景预测方法系统地选择操纵变量,

该模型研究了可变火炬气条件及其质量对现有燃气锅炉的影响。结果表明,火炬气温度对过程有名义上的影响。然而,火炬气成分的变化 - 高氢气携带量(CH 4超过 70 mol%或 C 2 H 4超过 40 mol% )会影响锅炉辐射区温度和燃烧室内的燃烧曲线。如果不加以预防,这些事件会进一步放大为损失控制事件,例如火焰撞击、燃烧室不稳定、蒸汽爆炸和管道破裂。

更新日期:2021-09-15
down
wechat
bug