当前位置: X-MOL 学术Front. Bioeng. Biotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering
Frontiers in Bioengineering and Biotechnology ( IF 5.7 ) Pub Date : 2021-09-14 , DOI: 10.3389/fbioe.2021.736489
Feihu Zhao 1, 2, 3 , Yi Xiong 4 , Keita Ito 1, 2 , Bert van Rietbergen 1 , Sandra Hofmann 1, 2
Affiliation  

Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent – assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.



中文翻译:

用于骨组织工程细胞力学生物学研究的支架内的多孔几何引导微机械环境

力学生物学研究是为了了解力学在细胞生理学和病理学中的作用。它将对研究骨骼生理学和病理学以及指导再生骨骼结构和功能特征的策略产生影响。力学生物学研究体外 将动态微机械环境应用于细胞 通过生物反应器。多孔支架通常用于在三维 (3D) 培养环境中容纳细胞。这种支架通常具有不同的孔几何形状(例如具有不同的孔形状、孔尺寸和孔隙率)。这些孔隙几何形状会影响细胞在加载到生物反应器中时所经历的内部微机械环境。因此,为了调整对细胞施加的微机械环境,研究人员可以调整施加的载荷和/或支架孔几何结构的设计。这篇综述将提供关于微机械环境(例如流体引起的壁剪切应力和机械应变)如何受到不同生物反应器内各种支架孔几何形状的影响的信息。它应允许研究人员根据已知的孔隙几何信息估计/量化微机械环境,或根据要应用的理想微机械环境找到合适的孔隙几何。最后,作为未来的工作,人工智能辅助技术可以实现固体多孔支架几何形状的自动设计,以调整/优化微机械环境。

更新日期:2021-09-14
down
wechat
bug