当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ion-Conducting Channel Implanted Anode Matrix for All-Solid-State Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2021-09-12 , DOI: 10.1002/aenm.202102045
Chanho Kim 1 , Jeongheon Kim 1 , Joonhyeok Park 1 , Jaeik Kim 1 , Seungwoo Lee 1 , Seho Sun 1 , Seungchul Myung 1 , Dongsoo Lee 1 , Keemin Park 1 , Inyoung Jang 1 , Sungmin Kim 1 , Hyungjun Lee 1 , Hoyeon Jung 1 , Ungyu Paik 1 , Taeseup Song 1
Affiliation  

All-solid-state batteries (ASSBs) are expected to be next-generation energy storage systems due to their high energy density and safety. However, their practical use has been limited by a poor rate capability caused by the Li dendrite growth. Under the operation with high current density, the Li migration rate at the interface between anode and solid electrolyte (SE) is faster than the Li replenishing rate by atom diffusion inside of Li, resulting in void formation at the interface between the anode and SE. These voids induce the increase in the localized current density, leading to the growth of Li dendrites. In this study, an ASSBs system is demonstrated with high rate capability by employing lithiated ZnO nanorods into Li. Lithiated ZnO nanorods, which are capable of Li-ion conduction, providing the passage for Li transportation from the Li bulk to the interface between the Li and SE, resulting in an improvement in the replenishing rate. The lithiated ZnO nanorods in Li enable interfacial integrity by suppressing the void formation at the Li/SE interface even under the high current density. ASSBs employing Li with lithiated ZnO nanorods exhibit stable cyclability without short circuit at 0.3 C during 300 cycles and excellent rate capability.

中文翻译:

用于具有高倍率能力和稳定阳极/固体电解质界面的全固态电池的离子传导通道注入阳极矩阵

由于其高能量密度和安全性,全固态电池(ASSB)有望成为下一代储能系统。然而,由于锂枝晶生长导致倍率能力差,它们的实际应用受到了限制。在高电流密度下,负极和固体电解质(SE)界面处的锂迁移速度快于锂内部原子扩散的锂补充速度,导致负极和固体电解质界面处形成空隙。这些空隙引起局部电流密度的增加,导致锂枝晶的生长。在这项研究中,通过将锂化的 ZnO 纳米棒用于锂,证明了 ASSBs 系统具有高倍率能力。能够传导锂离子的锂化 ZnO 纳米棒,为锂从锂体传输到锂和SE之间的界面提供了通道,从而提高了补充率。即使在高电流密度下,Li 中的锂化 ZnO 纳米棒也能通过抑制 Li/SE 界面处的空隙形成来实现界面完整性。采用锂化 ZnO 纳米棒的锂离子电池在 300 次循环期间在 0.3 C 下没有短路的情况下表现出稳定的循环性能和优异的倍率性能。
更新日期:2021-10-27
down
wechat
bug