当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-speed multinozzle additive manufacturing and extrusion modeling of large-scale microscaffold networks
Additive Manufacturing ( IF 11.0 ) Pub Date : 2021-09-11 , DOI: 10.1016/j.addma.2021.102294
Jean-François Chauvette , David Brzeski , Iee Lee Hia , Rouhollah D. Farahani , Nicola Piccirelli , Daniel Therriault

In this work, a six-degree-of-freedom (6-DOF) robotic infrastructure is used for the high-speed additive manufacturing (AM) of large-scale networks of high-resolution scaffolds made of microfilaments, referred as microscaffold networks. The use of a multinozzle printhead, featuring an extrusion nozzle array of 26 cylindrical nozzles of 250 µm inner diameter, enabled the AM of microscaffolds with very high flow rate (i.e., > 300 mm³/s) and printing speed (i.e., up to 250 mm/s) while preserving fine features. A Multinozzle Extrusion Prediction Model (MEPM), based on capillary rheometry, was developed to predict the extrusion pressure gradient and the overall total volumetric flow rate of the printing process. The MEPM predictions are made as a function of the material used, printing speed and multinozzle printhead configuration (i.e., nozzles inner diameter and number of nozzles). Experimental pressures and flow rates strongly match the MEPM predictions for a printing speed range of 0–250 mm/s. The MEPM is also used to explore the design of other multinozzle configurations. The advantages of the high-speed multinozzle AM infrastructure is demonstrated through four case studies. The high-speed printing of microscaffold network demonstrated a printing speed of up to 250 mm/s, with flow rate of ~ 319.4 mm³ /s. The 6-DOF of the robot are used to manufacture a variable pore size microscaffold network, which shows an achievable inter-filaments spacing of 0–750 µm. The printing of a large-scale partitioned microscaffold network spans over an area of ~ 9 × 104 mm2. Finally, a relatively thick partitioned microscaffold network is manufactured up to 50 layers (~ 10 mm thick). Findings of this work contribute to the development of multinozzle printheads, high-speed 3D printing and high-resolution microscaffold manufacturing, which could be targeted for a wide range of applications including sound absorption, smart materials, and tissue engineering.



中文翻译:

大规模微支架网络的高速多喷嘴增材制造和挤压建模

在这项工作中,六自由度 (6-DOF) 机器人基础设施用于高速增材制造 (AM) 由微丝制成的高分辨率支架的大规模网络,称为微支架网络。多喷嘴打印头的使用具有 26 个内径为 250 µm 的圆柱形喷嘴的挤出喷嘴阵列,使微型支架的 AM 具有非常高的流速(> 300 mm³/s)和打印速度(,高达 250 毫米/秒),同时保留精细特征。开发了基于毛细管流变学的多喷嘴挤出预测模型 (MEPM) 来预测挤出压力梯度和印刷过程的总体积流量。MEPM 预测是根据所用材料、打印速度和多喷嘴打印头配置(、喷嘴内径和喷嘴数量)。实验压力和流速与 MEPM 预测的打印速度范围为 0–250 mm/s 非常匹配。MEPM 还用于探索其他多喷嘴配置的设计。四个案例研究展示了高速多喷嘴 AM 基础设施的优势。微型支架网络的高速打印显示打印速度高达 250 mm/s,流速约为 319.4 mm³/s。机器人的 6-DOF 用于制造可变孔径的微支架网络,其显示可实现的细丝间距为 0–750 µm。大规模分区微支架网络的打印跨越约 9 × 10 4 mm 2 的区域. 最后,制造一个相对较厚的分区微支架网络,最多可达 50 层(约 10 毫米厚)。这项工作的发现有助于多喷嘴打印头、高速 3D 打印和高分辨率微型支架制造的发展,这些技术可用于广泛的应用,包括吸声、智能材料和组织工程。

更新日期:2021-09-17
down
wechat
bug