当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel lightweight high-energy absorbing auxetic structures guided by topology optimisation
International Journal of Mechanical Sciences ( IF 7.3 ) Pub Date : 2021-09-10 , DOI: 10.1016/j.ijmecsci.2021.106793
Rajendra Prasad Bohara 1 , Steven Linforth 1 , Tuan Nguyen 1 , Abdallah Ghazlan 1 , Tuan Ngo 1
Affiliation  

This paper aims to develop lightweight high-performance auxetic structures for protective applications such as blast and impact energy absorption. In this study, novel auxetic topologies were computed with an objective of energy absorption maximisation through the topology optimisation method. Analytical design formulations with the consideration of fabrication practicality were derived for the novel auxetic structures; named as the hourglass structure (HGS), braced cross-petal structure (BCPS) and cross-petal structure (CPS). Based on the formulated design parameters, rectangular scaffolds of each structure were designed to investigate bulk mechanical properties and energy absorption under a compressive load. Validated nonlinear finite element (FE) models developed in LS-DYNA FE code were used to examine the mechanical performance of the novel structures. The FE simulations revealed the deformation mechanism, negative Poisson's ratio, stress-strain behaviour and energy absorption. The protective performances of the developed auxetic structure were evaluated with respect to the peak elastic stress, plateau stress, onset of the densification strain and energy absorption capacity. The HGS outperformed the other structures in term of the protective performance. In addition, comparison of specific energy absorption at the onset of densification showed that the HGS, BCPS and CPS possessed superior energy absorption capacities than the conventional auxetic structures.



中文翻译:

拓扑优化引导的新型轻质高能吸收拉胀结构

本文旨在开发用于爆炸和冲击能量吸收等防护应用的轻型高性能拉胀结构。在这项研究中,通过拓扑优化方法以能量吸收最大化为目标计算了新型拉胀拓扑。针对新型拉胀结构,推导出了考虑制造实用性的分析设计公式;称为沙漏结构(HGS)、支撑交叉花瓣结构(BCPS)和交叉花瓣结构(CPS)。根据制定的设计参数,设计了每个结构的矩形支架,以研究压缩载荷下的整体力学性能和能量吸收。在 LS-DYNA FE 代码中开发的经过验证的非线性有限元 (FE) 模型用于检查新型结构的机械性能。有限元模拟揭示了变形机制、负泊松比、应力应变行为和能量吸收。对所开发的拉胀结构的保护性能进行了评估,包括峰值弹性应力、平台应力、致密化应变的开始和能量吸收能力。HGS 在防护性能方面优于其他结构。此外,在致密化开始时的比能量吸收的比较表明,HGS、BCPS 和 CPS 具有比传统拉胀结构优越的能量吸收能力。s 比率、应力应变行为和能量吸收。对所开发的拉胀结构的保护性能进行了评估,包括峰值弹性应力、平台应力、致密化应变的开始和能量吸收能力。HGS 在防护性能方面优于其他结构。此外,在致密化开始时的比能量吸收的比较表明,HGS、BCPS 和 CPS 具有比传统拉胀结构优越的能量吸收能力。s 比率、应力应变行为和能量吸收。对所开发的拉胀结构的保护性能进行了评估,包括峰值弹性应力、平台应力、致密化应变的开始和能量吸收能力。HGS 在防护性能方面优于其他结构。此外,在致密化开始时的比能量吸收的比较表明,HGS、BCPS 和 CPS 具有比传统拉胀结构优越的能量吸收能力。HGS 在防护性能方面优于其他结构。此外,在致密化开始时的比能量吸收的比较表明,HGS、BCPS 和 CPS 具有比传统拉胀结构优越的能量吸收能力。HGS 在防护性能方面优于其他结构。此外,在致密化开始时的比能量吸收的比较表明,HGS、BCPS 和 CPS 具有比传统拉胀结构优越的能量吸收能力。

更新日期:2021-09-20
down
wechat
bug