当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasticity and learning behavior emulated in a ZnO based transparent artificial synapse
Thin Solid Films ( IF 2.1 ) Pub Date : 2021-09-12 , DOI: 10.1016/j.tsf.2021.138924
P.S. Subin 1 , K.J. Saji 1, 2, 3 , M.K. Jayaraj 4, 5
Affiliation  

Artificial synaptic devices play a vital role in constructing artificial neural networks, fundamental building blocks of neuromorphic computing. In this article, we report a transparent synaptic device that manifests potentiation, depression and forgetting behavior analogous to the biological synapse. This synaptic device possesses paired-pulse facilitation, spike parameters dependent synaptic weight, and voltage-induced transition from short-term memory to long-term memory. This study reveals that the pulse with a higher amplitude, higher pulse width, and lower pulse interval produces more change in synaptic weight. The mechanism behind potentiation and depression in the fabricated device is proposed in terms of oxygen vacancy migration; oxygen vacancies are generated and drift during the application of input pulses, thus forming a conducting filament. This device exhibits excellent short-term plasticity and long-term potentiation depending upon the input conditions, which are inherent properties of neuroplasticity. Forgetting, referred as the spontaneous decay of conductance, is explained by the rupturing of oxygen vacancy filament due to recombination of oxygen vacancies with non-lattice oxygen ions present in indium tin oxide electrodes. This is confirmed by studying the decay in device with metal electrodes.



中文翻译:

在基于 ZnO 的透明人工突触中模拟的可塑性和学习行为

人工突触设备在构建人工神经网络方面发挥着至关重要的作用,人工神经网络是神经形态计算的基本构建块。在这篇文章中,我们报告了一种透明的突触装置,它表现出类似于生物突触的增强、抑郁和遗忘行为。这种突触装置具有成对脉冲促进、依赖突触权重的尖峰参数以及从短期记忆到长期记忆的电压诱导转变。这项研究表明,具有更高幅度、更高脉冲宽度和更低脉冲间隔的脉冲会产生更多的突触权重变化。从氧空位迁移的角度提出了所制造器件中增强和抑制背后的机制;在施加输入脉冲期间产生氧空位并漂移,从而形成导电细丝。该装置根据输入条件表现出优异的短期可塑性和长期增强,这是神经可塑性的固有特性。遗忘,称为电导的自发衰减,可以通过氧空位与氧化铟锡电极中存在的非晶格氧离子重新结合导致的氧空位丝断裂来解释。这通过研究具有金属电极的设备的衰减得到证实。可以通过氧空位与氧化铟锡电极中存在的非晶格氧离子的复合导致氧空位丝的断裂来解释。这通过研究具有金属电极的设备的衰减得到证实。可以通过氧空位与氧化铟锡电极中存在的非晶格氧离子的复合导致氧空位丝的断裂来解释。这通过研究具有金属电极的设备的衰减得到证实。

更新日期:2021-09-30
down
wechat
bug