当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Efficient Chemoenzymatic Cascade Catalysis of Biomass into Furfurylamine by a Heterogeneous Shrimp Shell-Based Chemocatalyst and an ω-Transaminase Biocatalyst in Deep Eutectic Solvent–Water
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2021-09-10 , DOI: 10.1021/acssuschemeng.1c05109
Jiacheng Ni 1 , Qing Li 2 , Lei Gong 1 , Xiao-Long Liao 2 , Zhi-Jun Zhang 3 , Cuiluan Ma 2 , Yucai He 1, 2
Affiliation  

Recently, the cost-effective production of high value-added furan chemicals from inexpensive, abundant, and renewable bioresources has gained much attention via a chemoenzymatic approach in an environmentally friendly reaction system. Furfurylamine is an important furan-based chemical for the production of additives, fibers, perfumes, agrochemicals, and pharmaceuticals. This study attempted to develop one sustainable approach for the production of furfurylamine via chemoenzymatic cascade catalysis of biomass into furfurylamine using a chemocatalyst and a biocatalyst. Using alkali-treated shrimp shells as the biobased support, a tin-based heterogeneous chemocatalyst (Sn-DAT-SS) was first prepared to transform corncob into furfural in 52.4% yield in deep eutectic solvent choline chloride:ethylene glycol (ChCl:EG)–water (10:90, v/v) at 170 °C within 0.5 h. Sn-DAT-SS was easy to recover and has good reusability. Detailed investigation using Fourier transform infrared (FT-IR) spectroscopy, Brunauer–Emmett–Teller (BET) analysis, temperature-programmed desorption of NH3 (NH3-TPD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) indicated that the Lewis and Brönsted acid sites existed on the surface of Sn-DAT-SS. The possible catalytic mechanism of the Sn-DAT-SS-catalyzed transformation of corncob into furfural in ChCl:EG–water was presented. To biologically synthesize furfurylamine, newly constructed recombinant Escherichia coli CCZU-XLS160 whole-cells harboring ω-transaminase and l-alanine dehydrogenase were used to catalyze biomass-derived furfural using available inexpensive NH4Cl (2.0 mol NH4Cl/mol furfural) as the amine donor in ChCl:EG–water (10:90, v/v) at 35 °C and pH 7.5. Within 71.5 h, 92.3 mM furfural derived from corncob was wholly transformed into furfurylamine with a productivity of 0.39 g furfurylamine/g xylan in corncob in ChCl:EG–water (10:90, v/v). This work demonstrated an environmentally friendly chemoenzymatic strategy for utilizing lignocellulosic biomass into furfurylamine via tandem chemocatalysis and biocatalysis in green reaction media. It was feasible to obtain furfurylamine from a renewable source consisting of corncob and shrimp shells.

中文翻译:

多相虾壳基化学催化剂和ω-转氨酶生物催化剂在深共晶溶剂-水中高效化学酶促级联催化生物质转化为糠胺

最近,在环境友好的反应系统中,通过化学酶法从廉价、丰富和可再生的生物资源中经济高效地生产高附加值呋喃化学品受到了广泛关注。糠胺是一种重要的呋喃基化学品,用于生产添加剂、纤维、香水、农用化学品和药物。本研究试图开发一种可持续的方法,通过使用化学催化剂和生物催化剂将生物质化学酶促级联催化转化为糠胺。使用碱处理过的虾壳作为生物基载体,首先制备了锡基多相化学催化剂 (Sn-DAT-SS),在深共熔溶剂氯化胆碱:乙二醇 (ChCl:EG) 中以 52.4% 的收率将玉米芯转化为糠醛– 水 (10:90, v/v) 在 170 °C 下 0.5 小时内。Sn-DAT-SS 易于回收,具有良好的可重用性。使用傅里叶变换红外 (FT-IR) 光谱、Brunauer-Emmett-Teller (BET) 分析、NH 的程序升温解吸进行详细研究3 (NH 3 -TPD)、扫描电子显微镜 (SEM)、X 射线光电子能谱 (XPS) 和 X 射线衍射 (XRD) 表明 Sn-DAT-SS 表面存在路易斯酸位和布朗斯台德酸位. 介绍了 Sn-DAT-SS 催化玉米芯在 ChCl:EG-水中转化为糠醛的可能催化机制。为了生物合成糠胺,新构建的含有 ω-转氨酶和l-丙氨酸脱氢酶的重组大肠杆菌CCZU-XLS160 全细胞用于催化生物质衍生的糠醛,使用可用的廉价 NH 4 Cl(2.0 mol NH 4Cl/mol 糠醛)作为胺供体在 ChCl:EG-水 (10:90, v/v) 中,温度为 35 °C 和 pH 7.5。在 71.5 小时内,来自玉米芯的 92.3 mM 糠醛完全转化为糠胺,在 ChCl:EG-水 (10:90, v/v) 中,玉米芯中的生产率为 0.39 g 糠胺/g 木聚糖。这项工作展示了一种环保的化学酶促策略,通过串联化学催化和绿色反应介质中的生物催化,将木质纤维素生物质转化为糠胺。从玉米芯和虾壳组成的可再生资源中获得糠胺是可行的。
更新日期:2021-09-27
down
wechat
bug