当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion
Applied Energy ( IF 11.2 ) Pub Date : 2021-09-10 , DOI: 10.1016/j.apenergy.2021.117768
Pengtao Yue , Zhongyin Kang , Qian Fu , Jun Li , Liang Zhang , Xun Zhu , Qiang Liao

Electrochemical CO2 reduction provides a new insight to produce value-added chemicals production, but it requires a large amount of energy inputs to support the process of CO2 capture (i.e., desorption and separation process). Carbon-based fuels production via electrolytic (bi)carbonate conversion can bypass the energy-intensive steps (desorption and separation), becoming more environmental-friendly compared to electrolytic gaseous CO2-to-chemicals conversion. Here, we comprehensively explore and assess the energy conversion and environmental impacts, and economic benefits of the (bi)carbonate-to-chemicals and gaseous CO2-to-chemicals conversions using life cycle and economic assessments. The results show that the (bi)carbonate-to-chemicals conversion promote the energy and environmental benefits but reduce the economic benefits. (Bi)carbonate-to-formate and -CO conversion show low net energy ratio (1.90 and 1.93, respectively) and Greenhouse gas emissions (−0.5238 and −0.6287 t CO2-eq/t CO2 gas injection, respectively). While gaseous CO2-to-formate and -CO conversion are more industrially feasible for commercial application due to their lower overpotentials, higher current density, and higher Faradaic efficiency. Additionally, the sensitivity analysis show that the (bi)carbonate-to-chemicals systems are more promising through reducing the overpotential, enhancing the current density and Faradaic efficiency of the systems. This work demonstrates that electrolytic (bi)carbonate-to-chemicals conversion systems are eco-friendly, and give a theoretical guide to develop this energy-efficient CO2 utilization approach.



中文翻译:

通过电解(重)碳酸盐和气态 CO2 转化生产化学品的生命周期和经济分析

电化学CO 2还原为生产高附加值化学品提供了新的思路,但它需要大量的能量输入来支持CO 2捕获过程(即解吸和分离过程)。通过电解(重)碳酸盐转化生产碳基燃料可以绕过能源密集型步骤(解吸和分离),与电解气态 CO 2到化学品的转化相比变得更加环保。在这里,我们全面探索和评估了(重)碳酸盐到化学品和气态 CO 2的能量转换和环境影响以及经济效益使用生命周期和经济评估的化学转化。结果表明,(重)碳酸盐到化学品的转化促进了能源和环境效益,但降低了经济效益。(Bi) 碳酸盐到甲酸盐和 -CO 的转化显示出低净能量比(分别为 1.90 和 1.93)和温室气体排放(分别为 -0.5238 和 -0.6287 t CO 2-eq /t CO 2气体注入)。虽然气态 CO 2由于其较低的过电位、较高的电流密度和较高的法拉第效率,甲酸和一氧化碳转化在工业上更适合商业应用。此外,敏感性分析表明,通过降低过电位、提高系统的电流密度和法拉第效率,(重)碳酸盐到化学品系统更有前景。这项工作表明电解(重)碳酸盐到化学品的转化系统是环保的,并为开发这种节能的 CO 2使用方法提供了理论指导。

更新日期:2021-09-10
down
wechat
bug