当前位置: X-MOL 学术JOM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of Stress Relaxation Modulus for a Nanocomposite Biosensor by Relaxation Time, Yield Stress, and Zero Complex Viscosity
JOM ( IF 2.6 ) Pub Date : 2021-09-08 , DOI: 10.1007/s11837-021-04853-1
Yasser Zare 1 , Kyong Yop Rhee 2
Affiliation  

This paper presents a simple equation for the stress relaxation modulus, G(t), of nanocomposite biosensor and blend films by relaxation time, yield stress, zero complex viscosity, and power-law index. The correctness of the advanced model is assessed by the measured results for the examples containing poly (ethylene oxide) (PEO), poly (lactic acid) (PLA) and carbon nanotubes. Furthermore, the roles of whole factors in G(t) are justified to approve the predictability of the advanced model. The model’s predictions correctly fit the experimental facts and whole factors reveal acceptable trends. All parameters including yield stress, relaxation time, zero complex viscosity, power-law index, and the width of the transition section directly affect G(t). The sensible results validate the advanced model, providing a simple procedure for approximating and optimizing G(t) in blend and nanocomposite systems.



中文翻译:

通过松弛时间、屈服应力和零复数粘度对纳米复合生物传感器的应力松弛模量进行建模

本文通过弛豫时间、屈服应力、零复数粘度和幂律指数给出了纳米复合生物传感器和混合膜的应力弛豫模量G(t)的简单方程。高级模型的正确性通过包含聚环氧乙烷 (PEO)、聚乳酸 (PLA) 和碳纳米管的示例的测量结果进行评估。此外,G(t)中全因子的作用被证明是合理的,以批准高级模型的可预测性。该模型的预测正确地符合实验事实,并且整体因素揭示了可接受的趋势。包括屈服应力、松弛时间、零复数粘度、幂律指数和过渡段宽度在内的所有参数都直接影响G(t). 合理的结果验证了先进的模型,为在混合和纳米复合材料系统中近似和优化G(t)提供了一个简单的程序。

更新日期:2021-09-09
down
wechat
bug