当前位置: X-MOL 学术J. Acoust. Soc. Am. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical analysis of a contactless transportation system for cylindrical objects based on ultrasonic levitation
The Journal of the Acoustical Society of America ( IF 2.4 ) Pub Date : 2021-09-08 , DOI: 10.1121/10.0006208
Yuanyuan Liu 1 , Martin Eser 1 , Xiaodong Sun 1 , Kian K Sepahvand 1 , Steffen Marburg 1
Affiliation  

Contactless transportation systems based on near-field acoustic levitation have the benefit of compact design and easy control which are able to meet the cleanliness and precision demands required in precision manufacturing. However, the problems involved in contactless positioning and transporting cylindrical objects have not yet been addressed. This paper introduces a contactless transportation system for cylindrical objects based on grooved radiators. A groove on the concave surface of the radiator produces an asymmetrical pressure distribution which results in a thrusting force to drive the levitator horizontal movement. The pressure distribution between the levitator and the radiator is acquired by solving the Reynolds equation. The levitation and the thrusting forces are obtained by integrating the pressure and the pressure gradient over the concave surface, respectively. The predicted results of the levitation force agree well with experimental observations from the literature. Parameter studies show that the thrusting force increases and converges to a stable value as the groove depth increases. An optimal value for the groove arc length is found to maximize the thrusting force, and the thrusting force increases as the groove width, the radiator vibration amplitude, and the levitator weight increase.

中文翻译:

基于超声波悬浮的圆柱形物体非接触式输送系统的理论分析

基于近场声悬浮的非接触式运输系统具有设计紧凑、易于控制的优点,能够满足精密制造对清洁度和精度的要求。然而,涉及非接触式定位和运输圆柱形物体的问题尚未得到解决。本文介绍了一种基于凹槽散热器的圆柱形物体非接触式运输系统。散热器凹面上的凹槽会产生不对称的压力分布,从而产生推力以驱动悬浮器水平运动。悬浮器和散热器之间的压力分布是通过求解雷诺方程获得的。悬浮力和推力分别通过对凹面上的压力和压力梯度进行积分获得。悬浮力的预测结果与文献中的实验观察结果非常吻合。参数研究表明,推力随着凹槽深度的增加而增加并收敛到一个稳定值。找到了凹槽弧长的最佳值以最大化推力,并且推力随着凹槽宽度、散热器振动幅度和悬浮器重量的增加而增加。
更新日期:2021-09-08
down
wechat
bug