当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoengineering of poly(3,4-ethylenedioxythiophene) for boosting electrochemical applications
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.solmat.2021.111357
Biying Zhuang , Xueqing Wang , Qianqian Zhang , Jingbing Liu , Yuhong Jin , Hao Wang

As one of the most promising conducting polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) has attracted significant interests in electrochemical applications such as energy storage and electrochromism. However, the intrinsic PEDOT having a dense structure usually exhibits unsatisfactory electrochemical performance such as low charge storage capacity and optical modulation behavior, which limits their applications in supercapacitors and electrochromic devices. In this case, nanoengineering provides an effective strategy to improve the electrochemical performance by optimizing the conjugated structure of PEDOT. Herein, comprehensive reviews and discussions are conducted to demonstrate the nanoengineering of PEDOT for boosting the electrochemical applications. The advantages and shortcomings of PEDOT are discussed firstly, and thus introducing the necessary of nanoengineering for optimizing the electrochemical performance. Some strategies of nanoengineering are summarized according to the classification of physical and chemical methods. Then, the latest advances and progresses are reviewed in detail concerning the applications of nanoengineered PEDOT in supercapacitors and electrochromic devices. Finally, some challenges and prospects are proposed to show the further development of nanoengineering of advanced PEDOT materials and devices. We anticipate that this review will spark new ideas for the construction of high-performance PEDOT towards developing advanced electrochemical devices.



中文翻译:

用于促进电化学应用的聚(3,4-亚乙基二氧噻吩)纳米工程

作为最有前途的导电聚合物之一,聚(3,4-乙撑二氧噻吩)(PEDOT)在能量存储和电致变色等电化学应用中引起了极大的兴趣。然而,具有致密结构的本征PEDOT通常表现出令人不满意的电化学性能,例如低电荷存储容量和光调制行为,这限制了它们在超级电容器和电致变色器件中的应用。在这种情况下,纳米工程通过优化 PEDOT 的共轭结构提供了一种提高电化学性能的有效策略。在此,进行了全面的审查和讨论,以证明 PEDOT 的纳米工程可促进电化学应用。首先讨论PEDOT的优点和缺点,从而引入必要的纳米工程来优化电化学性能。根据物理和化学方法的分类总结了纳米工程的一些策略。然后,详细回顾了纳米工程PEDOT在超级电容器和电致变色器件中的应用的最新进展和进展。最后,提出了一些挑战和前景,以展示先进 PEDOT 材料和器件纳米工程的进一步发展。我们预计本次审查将为构建高性能 PEDOT 以开发先进的电化学设备激发新的思路。根据物理和化学方法的分类总结了纳米工程的一些策略。然后,详细回顾了纳米工程PEDOT在超级电容器和电致变色器件中的应用的最新进展和进展。最后,提出了一些挑战和前景,以展示先进 PEDOT 材料和器件纳米工程的进一步发展。我们预计本次审查将为构建高性能 PEDOT 以开发先进的电化学设备激发新的思路。根据物理和化学方法的分类总结了纳米工程的一些策略。然后,详细回顾了纳米工程PEDOT在超级电容器和电致变色器件中的应用的最新进展和进展。最后,提出了一些挑战和前景,以展示先进 PEDOT 材料和器件纳米工程的进一步发展。我们预计本次审查将为构建高性能 PEDOT 以开发先进的电化学设备激发新的思路。提出了一些挑战和前景,以展示先进 PEDOT 材料和器件纳米工程的进一步发展。我们预计本次审查将为构建高性能 PEDOT 以开发先进的电化学设备激发新的思路。提出了一些挑战和前景,以展示先进 PEDOT 材料和器件纳米工程的进一步发展。我们预计本次审查将为构建高性能 PEDOT 以开发先进的电化学设备激发新的思路。

更新日期:2021-09-08
down
wechat
bug