当前位置: X-MOL 学术Prog. Retin. Eye. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A reinterpretation of critical flicker-frequency (CFF) data reveals key details about light adaptation and normal and abnormal visual processing
Progress in Retinal and Eye Research ( IF 17.8 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.preteyeres.2021.101001
Andrew T Rider 1 , G Bruce Henning 1 , Andrew Stockman 1
Affiliation  

Our ability to see flicker has an upper frequency limit above which flicker is invisible, known as the “critical flicker frequency” (CFF), that typically grows with light intensity (I). The relation between CFF and I, the focus of nearly 200 years of research, is roughly logarithmic, i.e., CFF ∝ log(I)—a relation called the Ferry-Porter law. However, why this law should occur, and how it relates to the underlying physiology, have never been adequately explained. Over the past two decades we have measured CFF in normal observers and in patients with retinal gene defects. Here, we reanalyse and model our data and historical CFF data. Remarkably, CFF-versus-I functions measured under a wide range of conditions in patients and in normal observers all have broadly similar shapes when plotted in double-logarithmic coordinates, i.e., log (CFF)-versus-log(I). Thus, the entire dataset can be characterised by horizontal and vertical logarithmic shifts of a fixed-shape template. Shape invariance can be predicted by a simple model of visual processing built from a sequence of low-pass filters, subtractive feedforward stages and gain adjustment (Rider, Henning & Stockman, 2019). It depends primarily on the numbers of visual processing stages that approach their power-law region at a given intensity and a frequency-independent gain reduction at higher light levels. Counter-intuitively, the CFF-versus-I relation depends primarily on the gain of the visual response rather than its speed—a conclusion that changes our understanding and interpretation of human flicker perception. The Ferry-Porter “law” is merely an approximation of the shape-invariant template.



中文翻译:

对临界闪烁频率 (CFF) 数据的重新解释揭示了有关光适应以及正常和异常视觉处理的关键细节

我们看到闪烁的能力有一个频率上限,超过该上限时闪烁是不可见的,称为“临界闪烁频率”(CFF),通常随着光强度(I)的增加而增加。CFF 和I之间的关系是近 200 年研究的重点,大致呈对数关系,CFF ∝ log (I) ——这种关系称为 Ferry-Porter 定律。然而,为什么会出现这个定律,以及它与潜在生理学的关系,从来没有得到充分的解释。在过去的二十年里,我们测量了正常观察者和视网膜基因缺陷患者的 CFF。在这里,我们重新分析和建模我们的数据和历史 CFF 数据。值得注意的是,CFF-- I在患者和正常观察者的各种条件下测量的函数在以双对数坐标绘制时都具有大致相似的形状,log (CFF)- vs -log( I )。因此,整个数据集可以通过固定形状模板的水平和垂直对数偏移来表征。形状不变性可以通过由一系列低通滤波器、减法前馈阶段和增益调整构建的简单视觉处理模型来预测(Rider, Henning & Stockman, 2019)。它主要取决于在给定强度下接近其幂律区域的视觉处理阶段的数量以及在较高光照水平下与频率无关的增益降低。与直觉相反,CFF-与-I关系主要取决于视觉响应的增益而不是其速度——这一结论改变了我们对人类闪烁感知的理解和解释。Ferry-Porter“定律”仅仅是形状不变模板的近似。

更新日期:2021-09-08
down
wechat
bug