当前位置: X-MOL 学术J. Opt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A spectrally selective gap surface-plasmon-based nanoantenna emitter compatible with multiple thermal infrared applications
Journal of Optics ( IF 2.1 ) Pub Date : 2021-08-24 , DOI: 10.1088/2040-8986/ac16b7
Ataollah Kalantari Osgouei 1, 2 , Amir Ghobadi 1, 3 , Bahram Khalichi 1, 3 , Ekmel Ozbay 1, 2, 3, 4
Affiliation  

Wavelength-selective nanoantenna emitters have attracted considerable attention due to their widespread applications ranging from thermal radiation management to thermophotovoltaics. In this paper, we design a wavelength-selective nanoantenna emitter based on the excitation of gap-surface plasmon modes using a metal–insulator–metal configuration (silicon dioxide (SiO2) sandwiched between silver (Ag) layers) for satisfying multiple infrared applications. The proposed design, which is called design I, realizes triple narrowband perfect absorptions at the resonance wavelengths of $1524\,\,{\text{nm}}$, $2279\,\,{\text{nm}}$, and $6000\,\,{\text{nm}}$, which perfectly match the atmospheric absorption bands while maintaining relatively low emissivity in the atmospheric transparency windows of $3\!\!-\!\!5\,\,\,\mu {\text{m}}$ and $8\!\!-\!\!12\,\,\,\mu {\text{m}}$. Later, the functionality of design I is extended, which is called design II, to include a broadband absorption at the near-infrared region to minimize the solar irradiation reflection from the nanoantenna emitter. Finally, single- and three-layer graphene are introduced to provide a real-time tuning of the infrared signature of the proposed nanoantenna emitter (design II). It is also demonstrated that the three-layer graphene structure can suppress an undesired absorption resonance wavelength related to the intrinsic vibrational modes (optical phonons) of the SiO2 layer by $53.19\% $ compared to $25.53\% $ for the single-layer one. The spectral analysis of design I is validated using both analytical and numerical approaches where the numerical simulation domain is extended for the analysis of design II. The thermal characteristic analyses of design I and design II (without/with graphene layers) reveal that infrared signatures of the blackbody radiation are significantly reduced for the whole wavelength spectrum at least by $96\% $ and $91\% $ within a wide temperature ranging from room temperature to $500\,{\text{K}}$, respectively.



中文翻译:

与多种热红外应用兼容的基于光谱选择性间隙表面等离子体的纳米天线发射器

波长选择性纳米天线发射器因其从热辐射管理到热光伏的广泛应用而引起了相当大的关注。在本文中,我们设计了一种基于间隙表面等离子体模式激发的波长选择性纳米天线发射器,使用金属 - 绝缘体 - 金属配置(二氧化硅(SiO 2)夹在银(Ag)层之间),以满足多种红外应用. 所提出的设计,这就是所谓的设计我,实现三重窄带完美吸收在共振波长$1524\,\,{\text{nm}}$$2279\,\,{\text{nm}}$$6000\,\,{\text{nm}}$,这完全符合大气中吸收频带,同时保持相对较低的发射率的大气透明度的窗口$3\!\!-\!\!5\,\,\,\mu {\text{m}}$$8\!\!-\!\!12\,\,\,\mu {\text{m}}$. 后来,设计 I 的功能被扩展,称为设计 II,包括在近红外区域的宽带吸收,以最大限度地减少来自纳米天线发射器的太阳辐射反射。最后,引入单层和三层石墨烯以实时调整所提出的纳米天线发射器(设计 II)的红外特征。还证明了三层石墨烯结构可以抑制与 SiO 2层的固有振动模式(光学声子)相关的不需要的吸收共振波长,$53.19\% $$25.53\% $对于单层。设计 I 的频谱分析使用解析和数值方法进行验证,其中数值模拟域扩展到设计 II 的分析。设计的热特性分析I和II设计(无/有石墨烯层)揭示了黑体辐射的红外线的签名是针对整个波长谱至少由显著降低$96\% $$91\% $很宽的温度范围从室温到内$500\,{\text{K}}$,分别。

更新日期:2021-08-24
down
wechat
bug