当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of a Casimir-driven parametric amplifier with resilience to Casimir pull-in for MEMS single-point magnetic gradiometry
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2021-09-07 , DOI: 10.1038/s41378-021-00289-4
Josh Javor 1 , Zhancheng Yao 2 , Matthias Imboden 3 , David K Campbell 2, 4, 5 , David J Bishop 1, 2, 4, 5, 6
Affiliation  

The Casimir force, a quantum mechanical effect, has been observed in several microelectromechanical system (MEMS) platforms. Due to its extreme sensitivity to the separation of two objects, the Casimir force has been proposed as an excellent avenue for quantum metrology. Practical application, however, is challenging due to attractive forces leading to stiction and device failure, called Casimir pull-in. In this work, we design and simulate a Casimir-driven metrology platform, where a time-delay-based parametric amplification technique is developed to achieve a steady-state and avoid pull-in. We apply the design to the detection of weak, low-frequency, gradient magnetic fields similar to those emanating from ionic currents in the heart and brain. Simulation parameters are selected from recent experimental platforms developed for Casimir metrology and magnetic gradiometry, both on MEMS platforms. While a MEMS offers many advantages to such an application, the detected signal must typically be at the resonant frequency of the device, with diminished sensitivity in the low frequency regime of biomagnetic fields. Using a Casimir-driven parametric amplifier, we report a 10,000-fold improvement in the best-case resolution of MEMS single-point gradiometers, with a maximum sensitivity of 6 Hz/(pT/cm) at 1 Hz. Further development of the proposed design has the potential to revolutionize metrology and may specifically enable the unshielded monitoring of biomagnetic fields in ambient conditions.



中文翻译:

用于 MEMS 单点磁梯度测量的 Casimir 驱动参量放大器的分析

卡西米尔力是一种量子力学效应,已在多个微机电系统 (MEMS) 平台中观察到。由于其对两个物体的分离极其敏感,卡西米尔力已被提议作为量子计量学的绝佳途径。然而,实际应用具有挑战性,因为吸引力会导致静摩擦和设备故障,称为卡西米尔拉入。在这项工作中,我们设计并模拟了 Casimir 驱动的计量平台,其中开发了基于时间延迟的参数放大技术以实现稳态并避免引入。我们将该设计应用于检测类似于心脏和大脑中离子电流发出的弱、低频、梯度磁场。模拟参数是从最近为 Casimir 计量学和磁梯度测量开发的实验平台中选择的,两者都在 MEMS 平台上。虽然 MEMS 为此类应用提供了许多优势,但检测到的信号通常必须处于设备的谐振频率,在生物磁场的低频范围内灵敏度会降低。使用 Casimir 驱动的参数放大器,我们报告了 MEMS 单点梯度仪的最佳分辨率提高了 10,000 倍,在 1 Hz 时的最大灵敏度为 6 Hz/(pT/cm)。所提议的设计的进一步发展有可能彻底改变计量学,并且可能特别能够在环境条件下对生物磁场进行无屏蔽监测。虽然 MEMS 为此类应用提供了许多优势,但检测到的信号通常必须处于设备的谐振频率,在生物磁场的低频范围内灵敏度会降低。使用 Casimir 驱动的参数放大器,我们报告了 MEMS 单点梯度仪的最佳分辨率提高了 10,000 倍,在 1 Hz 时的最大灵敏度为 6 Hz/(pT/cm)。所提议的设计的进一步发展有可能彻底改变计量学,并且可能特别能够在环境条件下对生物磁场进行无屏蔽监测。虽然 MEMS 为此类应用提供了许多优势,但检测到的信号通常必须处于设备的谐振频率,在生物磁场的低频范围内灵敏度会降低。使用 Casimir 驱动的参数放大器,我们报告了 MEMS 单点梯度仪的最佳分辨率提高了 10,000 倍,在 1 Hz 时的最大灵敏度为 6 Hz/(pT/cm)。所提议的设计的进一步发展有可能彻底改变计量学,并且可能特别能够在环境条件下对生物磁场进行无屏蔽监测。MEMS 单点梯度仪的最佳分辨率提高了 000 倍,在 1 Hz 时的最大灵敏度为 6 Hz/(pT/cm)。所提议的设计的进一步发展有可能彻底改变计量学,并且可能特别能够在环境条件下对生物磁场进行无屏蔽监测。MEMS 单点梯度仪的最佳分辨率提高了 000 倍,在 1 Hz 时的最大灵敏度为 6 Hz/(pT/cm)。所提议的设计的进一步发展有可能彻底改变计量学,并且可能特别能够在环境条件下对生物磁场进行无屏蔽监测。

更新日期:2021-09-07
down
wechat
bug