当前位置: X-MOL 学术Cellulose › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of flexible cellulose nanofiber fiber@graphene quantum dots hybrid film applied in supercapacitor and sensor
Cellulose ( IF 5.7 ) Pub Date : 2021-09-06 , DOI: 10.1007/s10570-021-04178-x
Chuanyin Xiong 1 , Jiayu Xu 1 , Qing Han 1 , Lei Dai 1 , Yonghao Ni 1, 2 , Chengrong Qin 3
Affiliation  

Cellulose nanofiber (CNF) materials have attracted increasing attention in the field of energy storage and sensing due to their flexibility, environmental protection and sustainability. However, CNF materials have poor conductivity and low utilization effciency, which limits their applications. Improving the conductivity and utilization efficiency of CNFs while retaining their advantages is of great significance for developing wide applications of biomass resources. In this work, noncarbonized CNF@graphene quantum dot (GQD) film with good flexibility was fabricated through a combination of electrolysis and liquid dispersion. The as-obtained hybrid film shows excellent electrochemical storage performance, mechanical properties and sensing characteristics. Specifically, the film presents a specific capacitance of 118 mF cm− 2 even at a ultrahigh scan rate of 1000 mV s− 1, and a high capacitance retention higher than 93% at different current densities after 5000 cycles. Additionally, the assembled supercapacitor based on the hybrid film possesses high power and energy density at the same time (782 mW cm− 2 and 596 µWh cm− 2). These results demonstrate that the hybrid film possesses excellent rate performance and cycle stability. In addition, the film is sensitive to movement of the human body.



中文翻译:

用于超级电容器和传感器的柔性纤维素纳米纤维纤维@石墨烯量子点混合膜的构建

纤维素纳米纤维(CNF)材料由于其灵活性、环保性和可持续性,在能量存储和传感领域引起了越来越多的关注。然而,CNF材料导电性差,利用效率低,限制了其应用。在保持其优势的同时提高CNFs的电导率和利用效率对于开发生物质资源的广泛应用具有重要意义。在这项工作中,通过电解和液体分散的组合制造了具有良好柔韧性的非碳化 CNF@石墨烯量子点(GQD)薄膜。所获得的混合薄膜显示出优异的电化学存储性能、机械性能和传感特性。具体而言,该薄膜呈现出 118 mF cm 的比电容− 2即使在 1000 mV s − 1的超高扫描速率下,并且在 5000 次循环后在不同电流密度下的高电容保持率高于 93%。此外,基于混合膜组装的超级电容器同时具有高功率和能量密度(782 mW cm - 2和 596 µWh cm - 2)。这些结果表明混合膜具有优异的倍率性能和循环稳定性。此外,薄膜对人体的运动很敏感。

更新日期:2021-09-07
down
wechat
bug