当前位置: X-MOL 学术J. Intell. Robot. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller Design for Quadrotors
Journal of Intelligent & Robotic Systems ( IF 3.3 ) Pub Date : 2021-09-06 , DOI: 10.1007/s10846-021-01475-2
Umut Tilki 1 , Ali Can Erüst 2
Affiliation  

Nowadays, small structured unmanned aerial vehicles (UAVs) with four-rotor (Quadrotor) appear in every part of human life works. As the usage areas of the air vehicles become widespread, the development of controller structures which allows the quadrotor to track a specified trajectory precisely is a new research area of interest for researchers. In this work, the nonlinear mathematical model of a four-rotor UAV is obtained by using Newton-Euler method. In the trajectory tracking system of this quadrotor, a new controller structure which is called Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller (RABGFDTSMC) is designed. In this controller structure, the control process is divided into two subsystems in order to provide position and attitude control. RABGFDTSMC is applied to the fully actuated and underactuated subsystems individually. Coefficients of the controller is obtained by using pre-defined characteristic equation. Besides, overall system stability is proved with the Lyapunov function. To demonstrate the effectiveness of the proposed controller, simulation experiments are conducted in MATLAB/ Simulink environment. The simulation results of the proposed controller are compared with the global fast dynamic terminal sliding mode controller by means of trajectory tracking performance in steady-state and transient phases. As a result, the proposed controller RABGFDTSMC method proved its robustness according to the smaller steady state error with less oscillations and more precise flight performance in trajectory tracking.



中文翻译:

四旋翼的鲁棒自适应反推全局快速动态终端滑模控制器设计

如今,四旋翼(Quadrotor)小型结构化无人机(UAV)出现在人类生活工作的方方面面。随着飞行器的使用领域越来越广泛,开发允许四旋翼飞行器精确跟踪指定轨迹的控制器结构是研究人员感兴趣的新研究领域。本文采用牛顿-欧拉法建立了四旋翼无人机的非线性数学模型。在该四旋翼飞行器的轨迹跟踪系统中,设计了一种新的控制器结构,称为鲁棒自适应反步全局快速动态终端滑模控制器(RABGFDTSMC)。在这种控制器结构中,控制过程分为两个子系统,以提供位置和姿态控制。RABGFDTSMC 分别应用于完全驱动和欠驱动子系统。控制器的系数是通过使用预定义的特征方程获得的。此外,用李雅普诺夫函数证明了系统的整体稳定性。为了证明所提出的控制器的有效性,在 MATLAB/Simulink 环境中进行了仿真实验。通过稳态和瞬态阶段的轨迹跟踪性能,将所提出控制器的仿真结果与全局快速动态终端滑模控制器进行了比较。因此,所提出的控制器 RABGFDTSMC 方法根据较小的稳态误差、较小的振荡和更精确的轨迹跟踪飞行性能证明了其鲁棒性。控制器的系数是通过使用预定义的特征方程获得的。此外,用李雅普诺夫函数证明了系统的整体稳定性。为了证明所提出的控制器的有效性,在 MATLAB/Simulink 环境中进行了仿真实验。通过稳态和瞬态阶段的轨迹跟踪性能,将所提出控制器的仿真结果与全局快速动态终端滑模控制器进行了比较。因此,所提出的控制器 RABGFDTSMC 方法根据较小的稳态误差、较小的振荡和更精确的轨迹跟踪飞行性能证明了其鲁棒性。控制器的系数是通过使用预定义的特征方程获得的。此外,用李雅普诺夫函数证明了系统的整体稳定性。为了证明所提出的控制器的有效性,在 MATLAB/Simulink 环境中进行了仿真实验。通过稳态和瞬态阶段的轨迹跟踪性能,将所提出控制器的仿真结果与全局快速动态终端滑模控制器进行了比较。因此,所提出的控制器 RABGFDTSMC 方法根据较小的稳态误差、较小的振荡和更精确的轨迹跟踪飞行性能证明了其鲁棒性。为了证明所提出的控制器的有效性,在 MATLAB/Simulink 环境中进行了仿真实验。通过稳态和瞬态阶段的轨迹跟踪性能,将所提出控制器的仿真结果与全局快速动态终端滑模控制器进行了比较。因此,所提出的控制器 RABGFDTSMC 方法根据较小的稳态误差、较小的振荡和更精确的轨迹跟踪飞行性能证明了其鲁棒性。为了证明所提出的控制器的有效性,在 MATLAB/Simulink 环境中进行了仿真实验。通过稳态和瞬态阶段的轨迹跟踪性能,将所提出控制器的仿真结果与全局快速动态终端滑模控制器进行了比较。因此,所提出的控制器 RABGFDTSMC 方法根据较小的稳态误差、较小的振荡和更精确的轨迹跟踪飞行性能证明了其鲁棒性。

更新日期:2021-09-07
down
wechat
bug