当前位置: X-MOL 学术Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous tantalum scaffolds: Fabrication, structure, properties, and orthopedic applications
Materials & Design ( IF 8.4 ) Pub Date : 2021-09-06 , DOI: 10.1016/j.matdes.2021.110095
Hairui Gao 1 , Jingzhou Yang 1, 2, 3 , Xia Jin 1, 4 , Xinhua Qu 5 , Faqiang Zhang 1 , Dachen Zhang 2, 3 , Haishen Chen 2, 3 , Huiling Wei 2, 3 , Shupei Zhang 2, 3 , Weitao Jia 6 , Bing Yue 5 , Xiaopeng Li 7
Affiliation  

Porous tantalum scaffolds have been developed and clinically utilized as superior implantable biomaterials for orthopedic applications owing to their exceptional corrosion resistance, biocompatibility, osteointegration, and osteoconductivity. Moreover, the biomimetic porous structure and mechanical properties of these scaffolds match those of human bone tissues. Over the past twenty years, the fabrication, structure and properties optimization, and application expansion of porous tantalum scaffolds have been advanced by emerging manufacturing technologies, characterization methodologies, and clinical utilization strategies. Combining our innovative work and over two hundred extant publications, we overview the fabrication, structure, properties, and orthopedic applications of porous tantalum bone scaffolds. Additive manufacturing has become a powerful and versatile technique for fabricating patient-specific and anatomy-matching porous tantalum bone implants with well-designed architectures. Additively manufactured tantalum scaffolds are deemed as new biomaterials for bone repair, as their microstructures and mechanical properties differ from those of bioimplants fabricated by traditional technologies. To understand the safety and effectiveness of these scaffolds for orthopedic applications, we must undertake basic scientific investigations, in vitro studies, pre-clinical studies, and clinical research. Biomechanical studies and porous structure design based on finite element analysis are additional hot topics in tantalum scaffold research.



中文翻译:

多孔钽支架:制造、结构、性能和矫形应用

多孔钽支架由于其优异的耐腐蚀性、生物相容性、骨整合和骨传导性,已被开发并在临床上用作骨科应用的优质可植入生物材料。此外,这些支架的仿生多孔结构和机械性能与人体骨组织相匹配。在过去的二十年中,新兴的制造技术、表征方法和临床应用策略推动了多孔钽支架的制造、结构和性能优化以及应用扩展。结合我们的创新工作和 200 多篇现有出版物,我们概述了多孔钽骨支架的制造、结构、性能和骨科应用。增材制造已成为一种强大且通用的技术,可用于制造具有精心设计的结构的特定患者且与解剖结构匹配的多孔钽骨植入物。增材制造的钽支架被认为是用于骨修复的新型生物材料,因为它们的微观结构和机械性能与传统技术制造的生物植入物不同。要了解这些用于骨科应用的支架的安全性和有效性,我们必须进行基础科学调查,因为它们的微观结构和机械性能与传统技术制造的生物植入物不同。要了解这些用于骨科应用的支架的安全性和有效性,我们必须进行基础科学调查,因为它们的微观结构和机械性能与传统技术制造的生物植入物不同。要了解这些用于骨科应用的支架的安全性和有效性,我们必须进行基础科学调查,体外研究、临床前研究和临床研究。基于有限元分析的生物力学研究和多孔结构设计是钽支架研究的另一个热点。

更新日期:2021-09-12
down
wechat
bug