当前位置: X-MOL 学术Prog. Theor. Exp. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum noise and vacuum fluctuations in balanced homodyne detections through ideal multi-mode detectors
Progress of Theoretical and Experimental Physics ( IF 3.5 ) Pub Date : 2021-09-06 , DOI: 10.1093/ptep/ptab113
Kouji Nakamura 1
Affiliation  

The balanced homodyne detection as a readout scheme of gravitational-wave detectors is carefully examined from the quantum field theoretical point of view. The readout scheme in gravitational-wave detectors specifies the directly measured quantum operator in the detection. This specification is necessary when we apply the recently developed quantum measurement theory to gravitational-wave detections. We examine the two models of measurement. One is the model in which the directly measured quantum operator at the photodetector is Glauber’s photon number operator, and the other is the model in which the power operator of the optical field is directly measured. These two are regarded as ideal models of photodetectors. We first show these two models yield the same expectation value of the measurement. Since there is consensus in the gravitational-wave community that vacuum fluctuations contribute to the noises in the detectors, we also clarify the contributions of vacuum fluctuations to the quantum noise spectral density without using the two-photon formulation which is used in the gravitational-wave community. We found that the conventional noise spectral density in the two-photon formulation includes vacuum fluctuations from the main interferometer but does not include those from the local oscillator. Although the contribution of vacuum fluctuations from the local oscillator theoretically yields the difference between the above two models in the noise spectral densities, this difference is negligible in realistic situations.

中文翻译:

理想多模探测器平衡零差探测中的量子噪声和真空波动

从量子场理论的角度仔细研究了平衡零差检测作为引力波探测器的读出方案。引力波探测器中的读出方案指定了探测中直接测量的量子算子。当我们将最近开发的量子测量理论应用于引力波探测时,这个规范是必要的。我们检查了两种测量模型。一种是在光电探测器处直接测得的量子算子为格劳伯光子数算子的模型,另一种是直接测得光场的功率算子的模型。这两个被认为是光电探测器的理想模型。我们首先表明这两个模型产生了相同的测量期望值。由于引力波界一致认为真空涨落对探测器中的噪声有贡献,我们还阐明了真空涨落对量子噪声谱密度的贡献,而不使用引力波中使用的双光子公式社区。我们发现双光子公式中的常规噪声谱密度包括来自主干涉仪的真空波动,但不包括来自本地振荡器的真空波动。尽管来自本地振荡器的真空波动的贡献在理论上产生了上述两个模型在噪声谱密度方面的差异,但在实际情况下这种差异可以忽略不计。我们还阐明了真空涨落对量子噪声谱密度的贡献,而不使用引力波社区中使用的双光子公式。我们发现双光子公式中的常规噪声谱密度包括来自主干涉仪的真空波动,但不包括来自本地振荡器的真空波动。尽管来自本地振荡器的真空波动的贡献在理论上产生了上述两个模型在噪声谱密度方面的差异,但在实际情况下这种差异可以忽略不计。我们还阐明了真空涨落对量子噪声谱密度的贡献,而不使用引力波社区中使用的双光子公式。我们发现双光子公式中的常规噪声谱密度包括来自主干涉仪的真空波动,但不包括来自本地振荡器的真空波动。尽管来自本地振荡器的真空波动的贡献在理论上产生了上述两个模型在噪声谱密度方面的差异,但在实际情况下这种差异可以忽略不计。我们发现双光子公式中的常规噪声谱密度包括来自主干涉仪的真空波动,但不包括来自本地振荡器的真空波动。尽管来自本地振荡器的真空波动的贡献在理论上产生了上述两个模型在噪声谱密度方面的差异,但在实际情况下这种差异可以忽略不计。我们发现双光子公式中的常规噪声谱密度包括来自主干涉仪的真空波动,但不包括来自本地振荡器的真空波动。尽管来自本地振荡器的真空波动的贡献在理论上产生了上述两个模型在噪声谱密度方面的差异,但在实际情况下这种差异可以忽略不计。
更新日期:2021-09-06
down
wechat
bug