当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the Oxygenation Performance of a Cyanobacterial Lipoxygenase by Oxygen Channel Engineering
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2021-09-03 , DOI: 10.1021/acssuschemeng.1c05117
Yi-Ke Qi 1 , Yu-Cong Zheng 1 , Qi Chen 1 , Yucai He 2 , Zhi-Jun Zhang 1 , Jian-He Xu 1
Affiliation  

Lipoxygenase catalyzes the dioxygenation of unsaturated fatty acids, which represents a sustainable pathway for producing bioderived fine chemicals. Herein, structure-guided engineering of the oxygen tunnel of a well-expressed 13-(S)-lipoxygenase from cyanobacteria was performed, resulting in a mutant A324G/S392G which showed 3 to 5-fold increases in activity toward a panel of unsaturated fatty acids. Molecular dynamics simulations elucidated the molecular basis for A324 and S392 as activity determining residues in the oxygen tunnel. The practicability of the mutant was demonstrated by the biosynthesis of hydroperoxy fatty acid 13S-HPOD with a high space time yield (STY) of 2.28 kg L–1 d–1. Our results also demonstrate a good example for engineering biocatalysts that require gaseous molecules as cosubstrate.

中文翻译:

通过氧通道工程提高蓝细菌脂氧合酶的氧合性能

脂肪氧化酶催化不饱和脂肪酸的双氧化,这是生产生物衍生精细化学品的可持续途径。在此,对蓝藻中表达良好的 13-( S )-脂氧合酶的氧通道进行结构引导工程,产生了突变体 A324G/S392G,其对一组不饱和脂肪的活性增加了 3 到 5 倍。酸。分子动力学模拟阐明了 A324 和 S392 作为决定氧隧道中残留物的活性的分子基础。该突变体的实用性通过氢过氧脂肪酸 13 S -HPOD的生物合成得到证明,其时空产率 (STY) 为 2.28 kg L –1 d –1. 我们的结果还证明了一个很好的例子,用于需要气态分子作为共底物的工程生物催化剂。
更新日期:2021-09-20
down
wechat
bug