当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanisms of charge carrier transport in polycrystalline silicon passivating contacts
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2021-09-03 , DOI: 10.1016/j.solmat.2021.111359
L. Galleni , M. Fırat , H. Sivaramakrishnan Radhakrishnan , F. Duerinckx , L. Tous , J. Poortmans

We use temperature-dependent contact resistivity (ρc) measurements to systematically assess the dominant electron transport mechanism in a large set of poly-Si passivating contacts, fabricated by varying (i) the annealing temperature (Tann), (ii) the oxide thickness (tox), (iii) the oxidation method, and (iv) the surface morphology of the Si substrate. The results show that for silicon oxide thicknesses of 1.3–1.5 nm, the dominant transport mechanism changes from tunneling to drift-diffusion via pinholes in the SiOx layer for increasing Tann. This transition occurs for Tann in the range of 850°C-950 °C for a 1.5 nm thick thermal oxide, and 700°C-750 °C for a 1.3 nm thick wet-chemical oxide, which suggests that pinholes appear in wet-chemical oxides after exposure to lower thermal budgets compared to thermal oxides. For SiOx with tox = 2 nm, grown either thermally or by plasma-enhanced atomic layer deposition, carrier transport is pinhole-dominant for Tann = 1050 °C, whereas no electric current through the SiOx layer could be detected for lower Tann. Remarkably, the dominant transport mechanism is not affected by the substrate surface morphology, although lower values of ρc were measured on textured wafers compared to planar surfaces. Lifetime measurements suggest that the best carrier selectivity can be achieved by choosing Tann right above the transition range, but not too high, in order to induce pinhole dominant transport while preserving a good passivation quality.



中文翻译:

多晶硅钝化触点中载流子传输机制

我们使用与温度相关的接触电阻率 ( ρ c ) 测量来系统地评估大量多晶硅钝化接触中的主要电子传输机制,通过改变 (i) 退火温度 ( T ann ),(ii) 氧化物制造厚度 ( t ox )、(iii) 氧化方法和 (iv) Si 衬底的表面形态。结果表明,对于 1.3-1.5 nm 的氧化硅厚度,主要的传输机制从隧道传输变为漂移扩散,通过 SiO x层中的针孔来增加T ann。这种转变发生在T ann对于 1.5 nm 厚的热氧化物,在 850°C-950 °C 的范围内,对于 1.3 nm 厚的湿化学氧化物,在 700°C-750 °C 的范围内,这表明在暴露于湿化学氧化物后会出现针孔与热氧化物相比具有更低的热预算。对于的SiO X = 2nm时,生长的热或通过等离子增强的原子层沉积,载流子传输是针孔显性为Ť = 1050℃,而通过在SiO没有电流X层可以为下被检测到Ť。值得注意的是,主要的传输机制不受基材表面形态的影响,尽管ρ c 的值较低与平面表面相比,在纹理晶片上测量。寿命测量表明,最好的载流子选择性可以通过选择刚好在过渡范围之上的T ann来实现,但不要太高,以便在保持良好钝化质量的同时诱导针孔主导传输。

更新日期:2021-09-03
down
wechat
bug