当前位置: X-MOL 学术Comput. Geotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of soil–pile–structure interaction induced by vertical loads and tunnelling
Computers and Geotechnics ( IF 5.3 ) Pub Date : 2021-09-02 , DOI: 10.1016/j.compgeo.2021.104386
A. Franza 1 , C. Zheng 2 , A.M. Marshall 3 , R. Jimenez 2
Affiliation  

The response of pile groups and piled structures to vertical and tunnelling-induced loads is studied. A two-stage model is adopted that can efficiently consider external actions, greenfield tunnelling movements, superstructure stiffness, ultimate pile shaft and base stresses, pile-soil interactions in uniform or layered soils, and local soil behaviour (as either linear elastic, elastic perfectly-plastic, or nonlinear). Several scenarios are analysed: namely, piles subjected to vertical loads; piles and piled structures that are affected by tunnelling induced ground movements. Model results for piles under vertical loads compare well with field and other analytical models, confirming the robustness of the model. For tunnelling adjacent to or beneath single piles and pile groups, the impact of layered soils, soil yielding, and hyperbolic transfer mechanisms are shown to be significant, indicating that these aspects should be considered in risk assessments when using simplified models. Analyses of tunnelling beneath free-head piles and piled equivalent beams (describing flexible slabs or stiff buildings) confirm that pile-foundation connections and superstructures decrease tunnelling-induced displacements and deformations at the surface level; however, their action can also worsen the foundation distress with respect to force-moment structural capacity. Considering that the envelopes of fully-flexible and perfectly rigid superstructures will not always be conservative, soil-pile-structure interaction models are recommended for design.



中文翻译:

竖向荷载和隧道开挖引起的土-桩-结构相互作用研究

研究了桩组和桩结构对竖向和隧道引起的荷载的响应。采用两阶段模型,可以有效地考虑外部作用、新建隧道运动、上部结构刚度、极限桩轴和基础应力、均匀或分层土壤中的桩土相互作用以及局部土壤行为(如线弹性、弹性完美) -塑性或非线性)。分析了几种情况:即桩承受垂直载荷;受隧道掘进引起的地面运动影响的桩和桩结构。桩在垂直荷载下的模型结果与现场和其他分析模型的结果很好地比较,证实了模型的稳健性。对于单桩和桩群相邻或下方的隧道,分层土壤的影响,土壤屈服,双曲线转移机制被证明是重要的,这表明在使用简化模型时应在风险评估中考虑这些方面。对自由头桩和桩式等效梁(描述柔性板或刚性建筑物)下方的隧道掘进的分析证实,桩基连接和上部结构减少了隧道掘进引起的地表位移和变形;然而,他们的行动也可能加剧在力-力矩结构能力方面的基础问题。考虑到完全柔性和完全刚性上部结构的包络并不总是保守的,建议设计土-桩-结构相互作用模型。表明在使用简化模型时应在风险评估中考虑这些方面。对自由头桩和桩式等效梁(描述柔性板或刚性建筑物)下方的隧道掘进的分析证实,桩基连接和上部结构减少了隧道掘进引起的地表位移和变形;然而,他们的行动也可能加剧在力-力矩结构能力方面的基础问题。考虑到完全柔性和完全刚性上部结构的包络并不总是保守的,建议设计土-桩-结构相互作用模型。表明在使用简化模型时应在风险评估中考虑这些方面。对自由头桩和桩式等效梁(描述柔性板或刚性建筑物)下方的隧道掘进的分析证实,桩基连接和上部结构减少了隧道掘进引起的地表位移和变形;然而,他们的行动也可能加剧与力矩结构能力有关的基础问题。考虑到完全柔性和完全刚性上部结构的包络并不总是保守的,建议设计土-桩-结构相互作用模型。对自由头桩和桩式等效梁(描述柔性板或刚性建筑物)下方的隧道掘进的分析证实,桩基连接和上部结构减少了隧道掘进引起的地表位移和变形;然而,他们的行动也可能加剧在力-力矩结构能力方面的基础问题。考虑到完全柔性和完全刚性上部结构的包络并不总是保守的,建议设计土-桩-结构相互作用模型。对自由头桩和桩式等效梁(描述柔性板或刚性建筑物)下方的隧道掘进的分析证实,桩基连接和上部结构减少了隧道掘进引起的地表位移和变形;然而,他们的行动也可能加剧在力-力矩结构能力方面的基础问题。考虑到完全柔性和完全刚性上部结构的包络并不总是保守的,建议设计土-桩-结构相互作用模型。

更新日期:2021-09-03
down
wechat
bug