当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Highly Robust Ionotronic Fiber with Unprecedented Mechanomodulation of Ionic Conduction
Advanced Materials ( IF 29.4 ) Pub Date : 2021-09-03 , DOI: 10.1002/adma.202103755
Mingyue Yao 1 , Baohu Wu 2 , Xunda Feng 1 , Shengtong Sun 1 , Peiyi Wu 1
Affiliation  

Stretchable ionic conductors are appealing for tissue-like soft electronics, yet suffer from a tardy mechanoelectric response due to their poor modulation of ionic conduction arising from intrinsic homogeneous soft chain network. Here, a highly robust ionotronic fiber is designed by synergizing ionic liquid and liquid crystal elastomer with alternate rigid mesogen units and soft chain spacers, which shows an unprecedented strain-induced ionic conductivity boost (103 times enhanced as stretched to 2000% strain). Such a surprisingly high enhancement is attributed to the formation of microphase-separated low-tortuosity ion-conducting nanochannels guided by strain-induced emergence of aligned smectic mesophases, thus allowing for ultrafast ion transport that resembles the role of “swimming lanes.” Intriguingly, the boosting conductivity even reverses Pouillet's Law-dictated resistance increase at certain strains, leading to unique waveform-discernible strain sensing. Moreover, the fiber retains thermal actuation properties with a maximum of 70% strain changes upon heating, and enables integrated self-perception and actuation. The findings offer a promising molecular engineering route to mechanically modulate the ion transport behavior of ionic conductors toward advanced ionotronic applications.

中文翻译:

一种高度坚固的离子纤维,具有前所未有的离子传导机械调制

可拉伸的离子导体对组织状软电子设备很有吸引力,但由于其固有的同质软链网络对离子传导的调节较差,因此机械电响应迟缓。在这里,高度坚固的离子电子纤维是通过将离子液体和液晶弹性体与交替的刚性介晶单元和软链间隔物协同作用而设计的,这显示了前所未有的应变诱导离子电导率提升 ( 10 3拉伸至 2000% 应变时增强倍)。这种令人惊讶的高增强归因于微相分离的低曲率离子导电纳米通道的形成,这些纳米通道由应变诱导的排列近晶中间相的出现引导,从而实现了类似于“泳道”作用的超快离子传输。有趣的是,在某些应变下,提高的电导率甚至可以逆转 Pouillet 定律决定的电阻增加,从而实现独特的波形可识别应变传感。此外,该纤维在加热时保留了最大 70% 的应变变化的热驱动特性,并实现了集成的自我感知和驱动。这些发现提供了一条有前途的分子工程途径,以机械调节离子导体的离子传输行为,以实现先进的离子电子应用。
更新日期:2021-10-20
down
wechat
bug