当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape
Joule ( IF 39.8 ) Pub Date : 2021-09-03 , DOI: 10.1016/j.joule.2021.08.003
N. Samali Weliwatte 1 , Shelley D. Minteer 1
Affiliation  

Actualizing the theoretical potential of photoelectrocatalysis for energy-intensive CO2 reduction, in order to deliver a circular energy economy, is an ongoing research venture. Photobioelectrocatalysis incorporates biological entities that have evolved over billions of years for efficient light harvesting, photo-induced charge separation, and/or sustainable and selective formation of complex, high-energy products under mild conditions. While most existing photobioelectrocatalytic CO2 reduction systems are nature-inspired or biomimetic, their performances are limited in terms of stability and efficiency. Effective and efficient photo-bioelectrocatalytic CO2 reduction system design requires incisive integration of multidisciplinary approaches. Biohybrids, which amalgamate the superior features of respectively biotic and abiotic photoelectrocatalytic systems and utilize advances in materials and synthetic chemistry, synthetic biology, etc. to alleviate recurring limitations, are a pliable tool to navigate this system design. This work broadly summarizes existing photo-bioelectrocatalytic CO2 reduction technologies and their overarching limitations in terms of performance and prospective improvements required in order to facilitate broader applicability. Therein, crucial factors influencing the performance of these biohybrids, such as the type biological catalyst, band gap of photosensitizers, compatibility, and interfacing between biotic – abiotic units, structure, and performance of the overall cell, such as the complimentary half-cell reaction, pH are discussed. Persisting limitations with the increasing sophistication of biohybrid designs include the intricacy of modulating multivariant systems, intermittency of solar energy, poor electrochemical communication across biotic-abiotic interfaces, limited CO2 dissolution, and other complications overarchingly shared with microbial electrosynthesis and electrocatalytic CO2 reduction.



中文翻译:

用于循环能源景观的光生物电催化 CO2 还原

实现光电催化在能源密集型 CO 2 还原方面的理论潜力,以实现循环能源经济,是一项正在进行的研究。光生物电催化结合了已经进化了数十亿年的生物实体,用于在温和条件下有效地收集光、光诱导电荷分离和/或可持续和选择性地形成复杂的高能产物。虽然大多数现有的光生物电催化 CO 2 还原系统是受自然启发的或仿生的,但它们的性能在稳定性和效率方面受到限制。高效高效的光生物电催化CO 2 减少系统设计需要多学科方法的精辟整合。Biohybrids 结合了生物和非生物光电催化系统的优越特性,并利用材料和合成化学、合成生物学等方面的进步来减轻反复出现的局限性,是导航该系统设计的灵活工具。这项工作广泛总结了现有的光生物电催化 CO 2 减少技术及其在性能和预期改进方面的总体限制,以促进更广泛的适用性。其中,影响这些生物杂化物性能的关键因素,例如生物催化剂的类型、光敏剂的带隙、相容性和生物-非生物单元之间的界面、结构和整个电池的性能,例如互补的半电池反应, pH 值进行了讨论。随着生物混合设计的日益复杂化,持续存在的局限性包括调节多变量系统的复杂性、太阳能的间歇性、跨生物-非生物界面的不良电化学通信、有限的 CO 2 溶解,以及与微生物电合成和电催化 CO 2 还原总体上共享的其他并发症。

更新日期:2021-10-20
down
wechat
bug