当前位置: X-MOL 学术J. Fluids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid–structure modelling for material deformation during cavitation bubble collapse
Journal of Fluids and Structures ( IF 3.6 ) Pub Date : 2021-09-01 , DOI: 10.1016/j.jfluidstructs.2021.103370
Prasanta Sarkar 1 , Giovanni Ghigliotti 1 , Jean-Pierre Franc 1 , Marc Fivel 2
Affiliation  

The dynamics of cavitation bubbles and their interaction with solids has been studied for long, mostly on the macro-scale of sheet and vortex cavitation. Erosion takes place on small, concentrated areas of solid walls exposed to cavitation. One-way fluid structure interaction (FSI), in which the feedback of material deformation on the fluid is not considered, provides an adequate understanding of the underlying mechanism. However, in practical applications the solid material motion and deformation can significantly affect the bubble dynamics. This will, in principle, alter the structural loading, stresses and erosion in the solid. In this paper, we will report comparisons of one-way and two-way coupled FSI modelling using our finite volume based fluid solver YALES21 and finite element based solid solver Cast3M.2 In two-way FSI coupling, the feedback of the solid wall deformation is considered in the fluid domain. To do so, we develop a compressible fluid solver with Arbitrary Lagrangian–Eulerian formulation to equip it with moving mesh capabilities in order to maintain a continuous fluid–solid domain. We present results using a step-wise coupling approach for two-way FSI and analyse the effects due to structural response on bubble dynamics and damping of impact pressures by different materials. Finally, we discuss our understanding on the need for one-way and two-way FSI modelling based on structural characteristics which can significantly affect the material erosion by nearby cavitation bubbles.



中文翻译:

空化气泡坍塌过程中材料变形的流固建模

空化气泡的动力学及其与固体的相互作用已经研究了很长时间,主要是在片状空化和涡流空化的宏观尺度上。侵蚀发生在暴露于气蚀的固体壁的小而集中的区域上。单向流固耦合 (FSI),其中不考虑材料变形对流体的反馈,提供了对潜在机制的充分理解。然而,在实际应用中,固体材料的运动和变形会显着影响气泡动力学。原则上,这将改变固体中的结构载荷、应力和侵蚀。在本文中,我们将报告使用基于有限体积的流体求解器 YA​​LES2 1的单向和双向耦合 FSI 建模的比较和基于有限元的固体求解器 Cast3M。2在双向 FSI 耦合中,在流体域中考虑了实体壁变形的反馈。为此,我们开发了一个具有任意拉格朗日-欧拉公式的可压缩流体求解器,为其配备移动网格功能,以保持连续的流体-固体域。我们使用双向 FSI的逐步耦合方法呈现结果,并分析结构响应对气泡动力学和不同材料冲击压力阻尼的影响。最后,我们讨论了我们对基于结构特征的单向和双向 FSI 建模的理解,这些特征可以显着影响附近空化气泡对材料的侵蚀。

更新日期:2021-09-02
down
wechat
bug