当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices
Light: Science & Applications ( IF 19.4 ) Pub Date : 2021-09-01 , DOI: 10.1038/s41377-021-00609-3
Irfan Ahmed 1, 2 , Lei Shi 3 , Hannu Pasanen 4 , Paola Vivo 4 , Partha Maity 5 , Mohammad Hatamvand 1 , Yiqiang Zhan 1
Affiliation  

Hot charge carriers (HC) are photoexcited electrons and holes that exist in nonequilibrium high-energy states of photoactive materials. Prolonged cooling time and rapid extraction are the current challenges for the development of future innovative HC-based optoelectronic devices, such as HC solar cells (HCSCs), hot energy transistors (HETs), HC photocatalytic reactors, and lasing devices. Based on a thorough analysis of the basic mechanisms of HC generation, thermalization, and cooling dynamics, this review outlines the various possible strategies to delay the HC cooling as well as to speed up their extraction. Various materials with slow cooling behavior, including perovskites and other semiconductors, are thoroughly presented. In addition, the opportunities for the generation of plasmon-induced HC through surface plasmon resonance and their technological applications in hybrid nanostructures are discussed in detail. By judiciously designing the plasmonic nanostructures, the light coupling into the photoactive layer and its optical absorption can be greatly enhanced as well as the successful conversion of incident photons to HC with tunable energies can also be realized. Finally, the future outlook of HC in optoelectronics is highlighted which will provide great insight to the research community.



中文翻译:

顶部有足够的空间:热电荷载流子的产生及其在钙钛矿和其他基于半导体的光电器件中的应用

热电荷载流子 (HC) 是存在于光活性材料的非平衡高能态中的光激发电子和空穴。延长冷却时间和快速提取是未来基于 HC 的创新光电器件开发的当前挑战,例如 HC 太阳能电池 (HCSC)、热能晶体管 (HET)、HC 光催化反应器和激光装置。基于对 HC 生成、热化和冷却动力学的基本机制的彻底分析,本综述概述了延迟 HC 冷却以及加速其提取的各种可能策略。详细介绍了具有缓慢冷却行为的各种材料,包括钙钛矿和其他半导体。此外,详细讨论了通过表面等离子体共振产生等离子体诱导 HC 的机会及其在混合纳米结构中的技术应用。通过明智地设计等离子体纳米结构,光耦合到光活性层及其光吸收可以大大增强,并且还可以实现将入射光子成功转换为具有可调能量的 HC。最后,重点介绍了光电子学中 HC 的未来前景,这将为研究界提供深刻的见解。耦合到光敏层的光及其光吸收可以大大增强,并且还可以实现入射光子成功转换为具有可调能量的 HC。最后,重点介绍了光电子学中 HC 的未来前景,这将为研究界提供深刻的见解。耦合到光敏层的光及其光吸收可以大大增强,并且还可以实现入射光子成功转换为具有可调能量的 HC。最后,重点介绍了光电子学中 HC 的未来前景,这将为研究界提供深刻的见解。

更新日期:2021-09-01
down
wechat
bug