当前位置: X-MOL 学术APL Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong multipolar transition enhancement with graphene nanoislands
APL Photonics ( IF 5.6 ) Pub Date : 2021-08-02 , DOI: 10.1063/5.0053234
Gilles Rosolen 1 , Bjorn Maes 1
Affiliation  

For a long time, the point-dipole model was a central and natural approximation in the field of photonics. This approach assumes that the wavelength is much larger than the size of the emitting atom or molecule so that the emitter can be described as a single or a collection of elementary dipoles. This approximation no longer holds near plasmonic nanostructures, where the effective wavelength can reach the nanometer-scale. In that case, deviations arise and high-order transitions, beyond the dipolar ones, are not forbidden anymore. Typically, this situation requires intensive numerical efforts to compute the photonic response over the spatial extent of the emitter wavefunctions. Here, we develop an efficient and general model for the multipolar transition rates of a quantum emitter in a photonic environment by computing Green’s function through an eigen permittivity modal expansion. A major benefit of this approach is that the position of the emitter and the permittivity of the material can be swept in a rapid way. To illustrate, we apply the method on various forms of graphene nanoislands, and we demonstrate a local breakdown of the selection rules, with quadrupolar transition rates becoming 100 times larger than dipolar ones.

中文翻译:

石墨烯纳米岛的强多极跃迁增强

长期以来,点偶极子模型是光子学领域的核心和自然近似。这种方法假设波长远大于发射原子或分子的尺寸,因此发射器可以被描述为单个或一组基本偶极子。这种近似不再适用于等离子体纳米结构附近,其中有效波长可以达到纳米级。在这种情况下,会出现偏差,并且不再禁止超出偶极跃迁的高阶跃迁。通常,这种情况需要大量的数值努力来计算发射器波函数空间范围内的光子响应。这里,我们通过本征介电常数模态扩展计算格林函数,为光子环境中量子发射器的多极跃迁率开发了一个有效且通用的模型。这种方法的一个主要好处是可以快速扫描发射器的位置和材料的介电常数。为了说明这一点,我们将该方法应用于各种形式的石墨烯纳米岛,并展示了选择规则的局部分解,四极跃迁率变得比偶极跃迁率大 100 倍。
更新日期:2021-08-31
down
wechat
bug