当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering
Nano Energy ( IF 17.6 ) Pub Date : 2021-08-31 , DOI: 10.1016/j.nanoen.2021.106473
Roman V. Chernozem 1, 2 , Konstantin N. Romanyuk 3, 4 , Irina Grubova 1 , Polina V. Chernozem 1 , Maria A. Surmeneva 1 , Yulia R. Mukhortova 1 , Michael Wilhelm 5 , Tim Ludwig 5 , Sanjay Mathur 5 , Andrei L. Kholkin 1, 3, 4 , Erik Neyts 6 , Bogdan Parakhonskiy 2 , Andre G. Skirtach 2 , Roman A. Surmenev 1, 5
Affiliation  

Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 ± 29 mV) with increasing rGO content up to 1.0 wt% (314 ± 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the α-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on α-phase (P212121 space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.



中文翻译:

用于组织工程的还原氧化石墨烯功能化的混合可生物降解聚羟基丁酸酯支架的增强压电响应和表面电势

压电被认为是生物材料中促进骨组织再生的关键功能之一,但是,将生物相容性、生物降解性和 3D 结构与显着的压电响应相结合仍然是一个材料挑战。在此,开发了基于可生物降解的聚(3-羟基丁酸酯)(PHB)和还原氧化石墨烯(rGO)薄片的新型混合生物相容性 3D 支架。随着 rGO 含量增加至 1.0 wt% (314 ± 31 mV),纳米级洞察揭示了 PHB 纤维的更均匀分布和优越的表面电位值 (33 ± 29 mV)。在 0.7 wt% rGO 含量下检测到最大有效压电响应,表明面外和面内值分别比纯 PHB 纤维高 2.5 和 1.7 倍。添加 rGO 导致 PHB 纤维中成对薄片之间的锯齿形链形成增强。相比之下,rGO 含量的进一步增加降低了 α 晶体尺寸并阻止了锯齿形链构象。提出了一个相应的模型来解释由电纺 PHB 纤维中添加 rGO 引起的结构和分子变化。此外,有限元分析显示,与基于 α 相的单轴取向 PHB 纤维中的横向压电响应相比,垂直压电响应可以忽略不计。P2 1 2 1 2 1空间群)。因此,本研究展示了开发可生物降解的混合 3D 支架的有希望的结果,该支架具有用于各种组织工程应用的增强的压电响应。

更新日期:2021-09-09
down
wechat
bug