当前位置: X-MOL 学术Geophysics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Frequency-domain reflection waveform inversion with generalized internal multiple imaging
Geophysics ( IF 3.3 ) Pub Date : 2021-08-30 , DOI: 10.1190/geo2020-0706.1
Guanchao Wang 1 , Qiang Guo 2 , Tariq Alkhalifah 3 , Shangxu Wang 4
Affiliation  

Full-waveform inversion (FWI) has the potential to provide a high-resolution detailed model of the earth’s subsurface, but it often fails to do so if the starting model differs significantly from the true one. Reflection waveform inversion (RWI) is a popular method for building a sufficiently accurate initial model for FWI. In traditional RWI, the low-wavenumber updates are always computed and captured by smearing the data misfit along the reflection path with the help of migration/demigration. However, the success of RWI relies heavily on accurately reproducing the data in demigration. Thus, we have introduced a new generalized internal multiple imaging-based RWI (GIMI-RWI) implementation, in which we avoid the Born modeling and update the primary reflection kernel directly. In GIMI-RWI, we store one reflection kernel for each source-receiver pair, preserving the unique wavepath for every single source-receiver trace. Subsequently, the convolution between the data residuals and the corresponding reflection kernel can build the tomographic velocity updates. In this situation, the long-wavelength tomographic updates are free of migration footprints and will contribute a smoother background velocity to reduce the cycle-skipping risk and stabilize the followed FWI process. In addition, the GIMI-RWI method is source independent because it entirely relies on the data. Using a synthetic example extracted from the Sigsbee2A model, we find the reliable performance of the GIMI-RWI technique.

中文翻译:

具有广义内部多重成像的频域反射波形反演

全波形反演 (FWI) 有可能提供地球地下的高分辨率详细模型,但如果起始模型与真实模型有显着差异,则通常无法做到这一点。反射波形反演 (RWI) 是为 FWI 构建足够准确的初始模型的流行方法。在传统的 RWI 中,低波数更新总是通过在迁移/去迁移的帮助下沿着反射路径涂抹不匹配的数据来计算和捕获。然而,RWI 的成功在很大程度上依赖于准确再现迁移中的数据。因此,我们引入了一种新的基于广义内部多重成像的 RWI (GIMI-RWI) 实现,其中我们避免了 Born 建模并直接更新主反射内核。在 GIMI-RWI 中,我们为每个源-接收器对存储一个反射内核,为每个源-接收器轨迹保留唯一的波路径。随后,数据残差和相应的反射核之间的卷积可以构建断层速度更新。在这种情况下,长波长断层扫描更新没有迁移足迹,并将提供更平滑的背景速度,以降低跳周期风险并稳定后续的 FWI 过程。此外,GIMI-RWI 方法是独立于源的,因为它完全依赖于数据。使用从 Sigsbee2A 模型中提取的合成示例,我们发现了 GIMI-RWI 技术的可靠性能。数据残差和相应的反射核之间的卷积可以构建断层扫描速度更新。在这种情况下,长波长断层扫描更新没有迁移足迹,并将提供更平滑的背景速度,以降低跳周期风险并稳定后续的 FWI 过程。此外,GIMI-RWI 方法是独立于源的,因为它完全依赖于数据。使用从 Sigsbee2A 模型中提取的合成示例,我们发现了 GIMI-RWI 技术的可靠性能。数据残差和相应的反射核之间的卷积可以构建断层扫描速度更新。在这种情况下,长波长断层扫描更新没有迁移足迹,并将提供更平滑的背景速度,以降低跳周期风险并稳定后续的 FWI 过程。此外,GIMI-RWI 方法是独立于源的,因为它完全依赖于数据。使用从 Sigsbee2A 模型中提取的合成示例,我们发现了 GIMI-RWI 技术的可靠性能。GIMI-RWI 方法是独立于源的,因为它完全依赖于数据。使用从 Sigsbee2A 模型中提取的合成示例,我们发现了 GIMI-RWI 技术的可靠性能。GIMI-RWI 方法是独立于源的,因为它完全依赖于数据。使用从 Sigsbee2A 模型中提取的合成示例,我们发现了 GIMI-RWI 技术的可靠性能。
更新日期:2021-08-31
down
wechat
bug