当前位置: X-MOL 学术Chin. J. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intensified solar thermochemical CO2 splitting over iron-based redox materials via perovskite-mediated dealloying-exsolution cycles
Chinese Journal of Catalysis ( IF 16.5 ) Pub Date : 2021-08-30 , DOI: 10.1016/s1872-2067(21)63857-3
Yue Hu 1, 2 , Jian Wu 1, 3 , Yujia Han 1, 2 , Weibin Xu 1, 2 , Li Zhang 1 , Xue Xia 1, 3 , Chuande Huang 1 , Yanyan Zhu 3 , Ming Tian 1 , Yang Su 1 , Lin Li 1 , Baolin Hou 1 , Jian Lin 1 , Wen Liu 4 , Xiaodong Wang 1
Affiliation  

Solar thermochemical CO2-splitting (STCS) is a promising solution for solar energy harvesting and storage. However, practical solar fuel production by utilizing earth-abundant iron/iron oxides remains a great challenge because of the formation of passivation layers, resulting in slow reaction kinetics and limited CO2 conversion. Here, we report a novel material consisting of an iron-nickel alloy embedded in a perovskite substrate for intensified CO production via a two-step STCS process. The novel material achieved an unprecedented CO production rate of 381 mL g−1 min−1 with 99% CO2 conversion at 850 °C, outperforming state-of-the-art materials. In situ structural analyses and density functional theory calculations show that the alloy/substrate interface is the main active site for CO2 splitting. Preferential oxidation of the FeNi alloy at the interface (as opposed to forming an FeOx passivation shell encapsulating bare metallic iron) and rapid stabilization of the iron oxide species by the robust perovskite matrix significantly promoted the conversion of CO2 to CO. Facile regeneration of the alloy/perovskite interfaces was realized by isothermal methane reduction with simultaneous production of syngas (H2/CO = 2, syngas yield > 96%). Overall, the novel perovskite-mediated dealloying-exsolution redox system facilitates highly efficient solar fuel production, with a theoretical solar-to-fuel efficiency of up to 58%, in the absence of any heat integration.



中文翻译:

通过钙钛矿介导的脱合金 - 溶出循环加强太阳能热化学 CO2 在铁基氧化还原材料上的分裂

太阳能热化学 CO 2分解 (STCS) 是一种很有前景的太阳能收集和储存解决方案。然而,由于钝化层的形成,导致反应动力学缓慢和有限的 CO 2转化,利用地球上丰富的铁/铁氧化物生产实际太阳能燃料仍然是一个巨大的挑战。在这里,我们报告了一种由嵌入钙钛矿基材中的铁镍合金组成的新型材料,用于通过两步 STCS 工艺强化 CO 生产。这种新型材料在 850°C 下实现了前所未有的 381 mL g -1 min -1 的CO 产率和 99% 的 CO 2转化率,优于最先进的材料。就地结构分析和密度泛函理论计算表明,合金/基体界面是CO 2分裂的主要活性位点。FeNi 合金在界面处的优先氧化(与形成包裹裸金属铁的 FeO x钝化壳相反)和坚固的钙钛矿基体对氧化铁物质的快速稳定显着促进了 CO 2向 CO的转化。合金/钙钛矿界面是通过等温甲烷还原同时产生合成气(H 2/CO = 2,合成气产率 > 96%)。总体而言,新型钙钛矿介导的脱合金-脱溶氧化还原系统促进了高效的太阳能燃料生产,在没有任何热集成的情况下,太阳能燃料的理论效率高达 58%。

更新日期:2021-08-30
down
wechat
bug