当前位置: X-MOL 学术J. Sediment. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tide-dominated deltas responding to high-frequency sea-level changes, Pre-Messinian Rifian Corridor, Morocco: Discussion
Journal of Sedimentary Research ( IF 2 ) Pub Date : 2021-08-31 , DOI: 10.2110/jsr.2021.030
Wouter de Weger 1 , Domenico Chiarella 1 , Francisco J. Rodríguez Tovar 2 , Francisco J. Sierro 3 , Olmo Miguez-Salas 2 , M. Amine Manar 4 , F. Javier Hernández-Molina 1
Affiliation  

Beelen et. al. (2020) reinterpreted the late Miocene contourite depositional system of the Saiss Basin in the Rifian Corridor, Morocco (Capella et al. 2017; de Weger et al. 2020), as a tide-dominated delta environment that responded to high-frequency sea-level changes. Despite the authors stimulating a valuable discussion on the interpretation of the studied deposits, their proposed depositional system seems largely based on erroneous interpretations of the data that are misleading for the reader who is unfamiliar with the geological framework of the study area. Based on i) issues with spatial location of the outcrops they interpreted relative to known tectonic structures, ii) poor or contradictory age control that suggest that the studied outcrops are the same age, iii) evidence from faunal and sedimentary structures that better supports a deep-water setting, and iv) a lack of evidence to support the necessarily high-amplitude relative or eustatic sea-level changes, we consider that the balance of evidence recognized in these outcrops better supports a deep-water setting. With this comment we would like to address these inconsistencies and express our concerns about the train of thought used by Beelen et al. for their interpretation of shallow-marine rather than deep-marine depositional settings for the studied intervals.Beelen et al. provided a geological and paleogeographic framework that is mostly in line with the existing literature, reporting that a series of partially connected foreland basins formed the Rifian Corridor connection between the Atlantic Ocean and the Mediterranean Sea during the late Miocene. Furthermore, the authors address that the Rifian Corridor was probably divided into a narrower North Rifian Corridor (NRC) and a wider South Rifian Corridor (SRC), separated by an up-thrusted nappe belonging to the African continent (Capella et al. 2018). The Saiss foredeep basin, the main conduit of the SRC, is positioned in the front of this SW-ward emplaced nappe, bounded in the south, roughly 30 km south of the cities of Fes and Meknes, by the Moroccan Meseta and the Middle Atlas (Fig. 1A). Accordingly, Capella et al. (2017) and de Weger et al. (2020) argued that the frontal part of the nappe, which was already mostly emplaced by 7.8 Ma, formed the slope of the northern margin of the SRC. However, based on a misinterpretation of the geological map (Fig. 1B), Beelen et al. have erroneously considered the nappe as the Saiss Basin, and as such, assumed that the main conduit of the SRC was located on top of the nappe with its southern margin being located just north of the cities of Fes and Meknes.Beelen et al. considered for their reinterpretation of the depositional environment three outcrops: Ben Allou, El Adergha, and Driouate. In the paper, Beelen et al. state that these outcrops are “broadly similar and contemporaneous.” However, the deposits of the Ben Allou outcrop were deposited between 7.8 and 7.51 Ma, the El Adergha deposits between 7.35 and 7.25 Ma (Capella et al. 2017), and the Driouate deposits have not been dated by Beelen et al. but Beelen et al. considered them to be time equivalent to both Ben Allou and El Adergha. Strikingly, based on the original geological map (Chanakeb 2004) used by the Authors, as well as in Figure 1A reported here, the Driouate deposits are of middle Pliocene to upper Pleistocene in age (3.56–1.78 Ma). As such, the outcrops considered (Fig. 2) do not belong to the same stratigraphic interval and thus cannot be used for a time equivalent paleogeographic reconstruction.The paleogeographic reconstruction provided by Beelen et al. (their Fig. 15), based on the argument addressed above, not only places the SRC north of the foredeep basin and on top of the nappe, but it also contains discrepancies with respect to their Figure 1. Figure 1 by Beelen et al. correctly shows the relative location of the Driouate outcrop with respect to the Ben Allou outcrop in the southwest, geographically located west of the city of Fes. However, in their Figure 15 the Driouate system is positioned southeast with respect to the Ben Allou system and southwest compared to the city of Fes to support their interpretation. Furthermore, the authors also used paleocurrent data derived from Capella et al. (2017) for other nearby outcrops to support their interpretations. These data from Capella et al. (2017) however, are derived from outcrops of which the interpretation does not fit with the interpretation of Beelen et al., and the authors fail to discuss these deviating interpretations. For example, the Sidi Harazem outcrop has been interpreted by Capella et al. (2017) as turbidite deposits in the axial foredeep of the SRC whilst in the Beelen et al. proposed reconstruction, this outcrop is located on the southern margin of their corridor. Moreover, the Ain Kansera outcrop is used by Beelen et al. as an argument to support the presence of wave action and a shallow marine setting after the interpretation by Capella et al. (2017). However, Beelen et al. placed this outcrop in the axis of the SRC in their reconstruction (Fig. 15 in Beelen et al.), not fitting within their interpretation of a shallow marine setting.Based on the dominant occurrence of benthic foraminiferal genera indicative of shallow water environments, Ammonia, Elphidium, and Cibicides, Beelen et al. indicate deep-middle to inner-neritic water depths for the fine-grained deposits and inner-neritic to littoral water depths for the calcarenites. The presence of these genera is indeed consistent with inner-neritic settings, but the authors fail to explain how genera indicative of deeper settings (Pullenia, Dentalina, Oolina, Planulina, and others) were transported to the interpreted coastal environments. García-Gallardo et al. (2017) and van der Schee et al. (2016) have observed the abundant presence of shelf foraminifera in sandy deposits associated with the early Pliocene contourite deposits in the Gulf of Cadiz, in water depths exceeding 400 m. These allochthonous assemblages contain similar specimens as reported by Beelen et al., containing also abundant Ammonia and Elphidium. Garcia-Gallardo et al. (2017) and van der Schee et al. (2016) argued that these shelfal foraminifera were transported down the slope by turbidity currents to be redistributed along slope by contour currents, similarly as was proposed by Capella et al. (2017). All of this suggests that a shallow depositional setting cannot be affirmed by the foraminiferal assemblages. Furthermore, the Driourate section was interpreted as a lagoon deposit; however, most of the species found are incompatible with a lagoon setting. Although Ammonia and Elphidium can be found in lagoons, as well as in the inner shelf, Pullenia, Oolina, Amphicoryna, Dentalina, Planulina, and the planktonic genera, referred to in Table 2 of the authors' supplemental information, are characteristic of open, deeper-marine waters.Contourites are associated with bottom currents that transport and accumulate sedimentary particles. The type of particles transported by currents depends on the geological setting, and only a minority of these particles are formed on the slope. The vast majority are siliciclastic, supplied by, for example, rivers, or bioclastic (mostly calcareous fossils), formed on the shelf or from a pelagic settling (planktonic foraminifers, coccoliths) (e.g., de Castro et al. 2021b; Hüneke et al. 2021). The presence of largely fragmented macrofossils, such as barnacles, bryozoan, mollusks, calcareous algae, and others, which live in shallow-water environments, as such, cannot be considered as indicators of paleo–water depth. Bioclasts derived from these macrofossils are very commonly the main components of deposits associated with bottom currents (e.g., Longhitano et al. 2014; de Castro et al. 2021). Ostracods have, for example, been identified on the upper continental slope (at water depths of 501 m) and were used to evaluate their relationship with variability in bottom-water conditions and the control of the Levantine Intermediate Water current benthic faunas (Minto'o et al. 2015). Beelen et al. particularly regard the abundant occurrence of barnacles as an indicator of the shallow-water origin of the calcarenites as they argue that some of them appear to be in life position. Barnacles, however, are sessile crustaceans living attached to a substrate. We never found barnacles in life position and apparently neither have the authors, as they did not find the hard substrates on which these barnacles were fixed. To support their ideas, Beelen et al. speculated that these barnacles were probably attached to tidewrack or wood that was not preserved.Beelen et al. furthermore mentioned that trace fossils recognized in the Ben Allou and El Adergha outcrops are indicative of the Glossifungites Ichnofacies. However, two of the most abundant trace fossils recorded by Beelen et al. (Scolicia and Macaronichnus) are not included in this archetypical ichnofacies (MacEachern et al. 2007, 2012). Moreover, the ichnological information (i.e., Rhizocorallium, Skolithos, and Phytoplasma), presented to justify the Glossifungites Ichnofacies, is poorly documented. As such, any interpretation based on the recognition of the Glossifungites Ichnofacies is weak and should be reconsidered. Additionally, Rosalina is not an ichnogenus per se as this term only refers to small foraminiferans that produce small boreholes (Bromley 1981; Neumann and Wisshak 2006). Thus, the appearance of the “Rosalina” ichnogenus cannot be used to support that El Adergha was deposited in shallower waters compared to the gray marlstones in Ben Allou.Beelen et al. explain the alternating occurrence of “shallow-marine” and “deep-marine” fine-grained deposits by roughly 70–80 m fluctuations of high-frequency eustatic sea-level rise to support their interpretation of a tide-dominated delta. Although the authors claim that these high-magnitude sea-level fluctuations are supported by previous work, the references cited either do not cover the studied interval (Liebrand et al. 2011) or do not support such high-magnitude and high-frequency sea-level variations (Westerhold et al. 2005; Kominz et al. 2008). Westerhold et al. (2005) and Kominz et al. (2008) reported sea-level fluctuations for the late Tortonian of not more than 30 meters. Consequently, sea-level fluctuations with a magnitude sufficient to explain shallow-marine to deep-marine transitions are not supported, and in fact are contradicted by the references cited, making the interpretation of a deep-water depositional setting more suitable.Beelen et al. mention the presence of bidirectional sedimentary structures eleven times throughout the manuscript, but do not provide any data to support the interpretation of bidirectional tidal flow. Furthermore, the authors stated: “Overall, our combined measurements of paleocurrent directions across the calcarenite layers agree with those published by Capella et al. (2017) and show a dominance of southwestward-oriented, omnidirectional flow.” However, the authors failed to provide their own paleocurrent data; the data used (Fig. 16 in Beelen et al.) is derived from Capella et al. (2017), which does not show a bidirectional trend. Moreover, what has been reported as bidirectional cross stratification and potentially herringbone cross stratification (Fig. 4C in Beelen et al.) is an example of “false herringbones” showing a section which is not parallel to the paleo-flow. As such, we found the interpretation of the existence of bidirectional currents a somewhat “forced” interpretation.Beelen et al. mention that hummocky cross-stratification was found in the El Adergha outcrop (p. 1652), but this is not supported by any evidence. Moreover, the authors even mention a lack of sedimentary structures associated with waves, such as symmetrical ripples, hummocks, and swales (p. 1655).The presence of mudcracks, highly relevant for the interpretation of subaerial exposures, has been mentioned but is not strongly supported by evidence in the manuscript (their Fig. 6C). Furthermore, dewatering structures are used to support a periodic subaerial exposure (p. 1656), not considering that these structures are usually related to loosely packed and rapidly deposited sediment, independent of water depth. Plant rootlets (their Fig. 10B) have also been used to support the interpretation that the deposits have been subaerially exposed. However, the supporting material (their Fig. 10A and B) suggests that they are just as likely to be Anthropocene rather than Miocene roots growing in the strata and forcing them to break apart producing the photographed exposure (Fig. 10B). Furthermore, insect-larva burrows reported for the Driouate outcrop (their Fig. 10G), despite this outcrop not being relevant to their interpretation of the late Miocene, are also more probably the product of recent biological activity.Finally, the Ben Allou and El Adergha outcrops are composed of marls and sand bodies that, particularly in the Ben Allou outcrop, show large concave-up features. Although Beelen et al. argue to have found facies related to depositional sub-environments of a tide-dominated delta, evidence for a delta plain and a time-equivalent (7.8–7.25 Ma) proximal fluvial feeder system have not been documented.In conclusion, based on issues with spatial locations of the outcrops and the use of erroneous data, we find that the observations and interpretations provided by Beelen et al. are not adequate to challenge the current interpretations of the studied deposits as being formed in deepwater by the paleo-Mediterranean Outflow Water.

中文翻译:

潮汐主导的三角洲对高频海平面变化的响应,前墨西拿走廊,摩洛哥:讨论

比伦等。阿尔。(2020) 重新解释了摩洛哥 Rifian 走廊赛斯盆地晚中新世等高线沉积系统 (Capella et al. 2017; de Weger et al. 2020),作为一个以潮汐为主的三角洲环境,对高频海-水平变化。尽管作者激发了对研究沉积物解释的有价值的讨论,但他们提出的沉积系统似乎主要基于对数据的错误解释,这对不熟悉研究区域地质框架的读者来说是一种误导。基于 i) 他们解释的露头相对于已知构造结构的空间位置问题,ii) 较差或矛盾的年龄控制,表明所研究的露头年龄相同,iii) 更好地支持深水环境的动物群和沉积结构的证据,以及 iv) 缺乏证据来支持必然的高幅度相对或海平面变化,我们认为这些露头中公认的证据平衡更好地支持深水环境。有了这个评论,我们想解决这些不一致的问题,并表达我们对 Beelen 等人使用的思路的担忧。因为他们对研究间隔的浅海而不是深海沉积环境的解释。Beelen 等人。提供了一个与现有文献基本一致的地质和古地理框架,报道称,在中新世晚期,一系列部分连接的前陆盆地形成了大西洋和地中海之间的里弗亚走廊连接。此外,作者指出,Rifian Corridor 可能分为更窄的 North Rifian Corridor (NRC) 和更宽的 South Rifian Corridor (SRC),由属于非洲大陆的向上推覆的推覆层隔开(Capella et al. 2018) . Saiss 前渊盆地是 SRC 的主要通道,位于这个西南区的推覆推覆的前面,在南部,Fes 和 Meknes 市以南约 30 公里处,由摩洛哥 Meseta 和中阿特拉斯山脉组成(图1A)。因此,卡佩拉等人。(2017) 和 de Weger 等人。(2020) 认为,推覆的正面部分已经大部分被 7.8 Ma 包围,形成了 SRC 北缘的斜坡。然而,基于对地质图的误解(图 1B),Beelen 等人。错误地认为推覆是赛斯盆地,因此,假设 SRC 的主要管道位于推覆顶部,其南缘位于 Fes 和梅克内斯市的北部。 Beelen 等人。考虑他们重新解释沉积环境的三个露头:Ben Allou、El Adergha 和 Driouate。在论文中,Beelen 等人。声明这些露头是“大体相似和同时代的”。然而,Ben Allou 露头的沉积物沉积在 7.8 至 7.51 Ma 之间,El Adergha 沉积物沉积在 7.35 至 7.25 Ma 之间(Capella 等人,2017),Beelen 等人尚未确定 Driouate 矿床的年代。但比伦等人。认为它们的时间相当于 Ben Allou 和 El Adergha。引人注目的是,根据作者使用的原始地质图(Chanakeb 2004)以及此处报告的图 1A,Driouate 矿床的年龄为中上新世至上更新世(3.56-1.78 Ma)。因此,所考虑的露头(图 2)不属于同一地层区间,因此不能用于时间等效的古地理重建。Beelen 等人提供的古地理重建。(他们的图 15),基于上述论点,不仅将 SRC 置于前深盆地以北和推覆顶部,而且还包含与图 1 的差异。 Beelen 等人的图 1。正确显示了 Driouate 露头相对于西南的 Ben Allou 露头的相对位置,地理位置位于非斯市以西。然而,在他们的图 15 中,Driouate 系统相对于 Ben Allou 系统位于东南部,相对于 Fes 市位于西南,以支持他们的解释。此外,作者还使用了来自 Capella 等人的古流数据。(2017)其他附近的露头以支持他们的解释。这些数据来自 Capella 等人。(2017) 然而,来自露头的解释不符合 Beelen 等人的解释,作者未能讨论这些有偏差的解释。例如,Sidi Harazem 露头已被 Capella 等人解释过。(2017) 作为 SRC 轴向前深部的浊积沉积物,而在 Beelen 等人中。建议重建,这个露头位于他们走廊的南缘。此外,Ain Kansera 露头被 Beelen 等人使用。在 Capella 等人的解释后,作为支持波浪作用和浅海环境存在的论据。(2017)。然而,比伦等人。在他们的重建中将此露头放置在 SRC 的轴上(Beelen 等人的图 15),不符合他们对浅海环境的解释。基于指示浅水环境的底栖有孔虫属的主要发生,氨、Elphidium 和 Cibicides,Beelen 等。表示细粒沉积物的深中至内浅海水深和方解石的内浅海至沿海水深。这些属的存在确实与内部浅海环境一致,但作者未能解释属如何指示更深的环境(Pullenia、Dentalina、Oolina、Planulina 和其他)被运送到解释的沿海环境。加西亚-加拉多等人。(2017) 和 van der Schee 等人。(2016) 已经观察到在与加的斯湾早期上新世等高岩沉积相关的砂质沉积物中大量存在陆架有孔虫,水深超过 400 m。这些外来组合包含与 Beelen 等人报道的相似的标本,也包含丰富的氨和 Elphidium。加西亚-加拉多等人。(2017) 和 van der Schee 等人。(2016) 认为,这些陆架有孔虫被浊流沿斜坡向下输送,然后由等高流沿斜坡重新分布,与 Capella 等人提出的类似。(2017)。所有这些都表明,有孔虫组合不能证实浅层沉积环境。此外,Driourate 部分被解释为泻湖矿床;然而,发现的大多数物种都与泻湖环境不相容。虽然在泻湖以及内陆架中可以找到氨和 Elphidium,但在作者补充信息的表 2 中提到的Pullenia、Oolina、Amphicoryna、Dentalina、Planulina 和浮游属是开放的、更深的海洋水域。轮廓与输送和积累沉积颗粒的底流有关。洋流输送的颗粒类型取决于地质环境,这些颗粒中只有少数形成在斜坡上。绝大多数是硅质碎屑,例如由河流提供,或生物碎屑(主要是钙质化石),形成于陆架或远洋沉积物(浮游有孔虫、石块)(例如,de Castro 等人,2021b;Hüneke 等人,2021 年)。生活在浅水环境中的大量破碎的大型化石,如藤壶、苔藓动物、软体动物、钙质藻类等,不能被视为古水深的指标。源自这些大型化石的生物碎屑通常是与底流相关的沉积物的主要成分(例如,Longhitano 等人,2014 年;de Castro 等人,2021 年)。例如,在上大陆坡(水深 501 m)上发现了介形动物,并被用来评估它们与底水条件变化的关系以及控制黎凡特中水流底栖动物群(Minto'o等人,2015 年)。比伦等人。特别是将藤壶的大量出现作为钙质岩起源于浅水的指标,因为他们认为其中一些似乎处于生命状态。然而,藤壶是附着在基质上的无柄甲壳类动物。我们从未在生活位置发现藤壶,显然作者也没有发现,因为他们没有找到固定这些藤壶的硬质基底。为了支持他们的想法,Beelen 等人。推测这些藤壶可能附着在未保存的潮汐残骸或木材上。Beelen 等人。此外还提到,在 Ben Allou 和 El Adergha 露头中识别出的痕迹化石是 Glossifungites Ichnofacies 的标志。然而,Beelen 等人记录的两种最丰富的痕迹化石。(Scolicia 和 Macaronichnus) 不包括在这个原型地貌中 (MacEachern et al. 2007, 2012)。此外,用于证明光泽真菌岩相的形态学信息(即,Rhizocorallium、Skolithos 和 Phytoplasma)的记录很少。因此,任何基于对 Glossifungites Ichnofacies 的认识的解释都是薄弱的,应该重新考虑。此外,Rosalina 本身并不是一种鱼属,因为该术语仅指产生小孔的小型有孔虫(Bromley 1981;Neumann 和 Wisshak 2006)。因此,与 Ben Allou 的灰色泥灰岩相比,“Rosalina” ichnogenus 的出现不能支持 El Adergha 沉积在较浅的水域。解释“浅海”和“深海”细粒沉积物的交替出现,通过大约 70-80 m 的高频海平面上升波动来支持他们对潮汐主导的三角洲的解释。尽管作者声称这些高幅度的海平面波动得到了先前工作的支持,但所引用的参考文献要么没有涵盖所研究的区间(Liebrand 等人,2011 年),要么不支持这种高幅度和高频的海平面波动。水平变化(Westerhold et al. 2005; Kominz et al. 2008)。韦斯特霍尔德等人。(2005) 和 Kominz 等人。(2008) 报告了晚托尔顿阶不超过 30 米的海平面波动。因此,不支持足以解释浅海到深海过渡的海平面波动,并且实际上与引用的参考文献相矛盾,这使得对深水沉积环境的解释更合适。Beelen 等人。在整个手稿中十一次提到双向沉积结构的存在,但没有提供任何数据来支持双向潮汐流的解释。此外,作者表示:“总体而言,我们对方解石层古电流方向的综合测量与 Capella 等人发表的结果一致。(2017) 并显示出向西南方向的全方位流动的主导地位。” 然而,作者未能提供他们自己的古流数据;使用的数据(Beelen 等人的图 16)来自 Capella 等人。(2017),没有显示出双向趋势。而且,据报道,双向交叉分层和潜在的人字形交叉分层(Beelen 等人的图 4C)是“假人字形”的一个例子,显示了与古流不平行的剖面。因此,我们发现对双向电流存在的解释有点“强制”解释。Beelen 等人。提到在 El Adergha 露头中发现了 hummocky 交叉分层 (p. 1652),但这没有任何证据支持。此外,作者甚至提到缺乏与波浪相关的沉积结构,例如对称的涟漪、小丘和洼地 (p. 1655)。泥裂的存在与解释地下暴露高度相关,已被提及但并未被提及手稿中的证据强烈支持(他们的图6C)。此外,脱水结构用于支持周期性的地下暴露 (p. 1656),没有考虑到这些结构通常与松散堆积和快速沉积的沉积物有关,与水深无关。植物根茎(它们的图 10B)也被用来支持沉积物已经暴露于地下的解释。然而,支持材料(他们的图 10A 和 B)表明它们很可能是人类世而不是中新世根在地层中生长并迫使它们分裂产生照片曝光(图 10B)。此外,报告的 Driouate 露头的昆虫幼虫洞穴(他们的图 10G),尽管这种露头与他们对晚中新世的解释无关,也更可能是最近生物活动的产物。 最后,Ben Allou 和 El Adergha 露头由泥灰岩和砂体组成,特别是在 Ben Allou 露头中,显示出大的上凹特征。尽管 Beelen 等人 争论已发现与潮汐主导的三角洲的沉积亚环境相关的相,三角洲平原和时间等效(7.8-7.25 Ma)近端河流馈线系统的证据尚未记录。 总之,基于问题露头的空间位置和错误数据的使用,我们发现 Beelen 等人提供的观察和解释。不足以挑战目前对研究的沉积物的解释,因为它是由古地中海流出水在深水中形成的。尽管 Beelen 等人 争论已发现与潮汐主导的三角洲的沉积亚环境相关的相,三角洲平原和时间等效(7.8-7.25 Ma)近端河流馈线系统的证据尚未记录。 总之,基于问题露头的空间位置和错误数据的使用,我们发现 Beelen 等人提供的观察和解释。不足以挑战目前对研究的沉积物的解释,因为它是由古地中海流出水在深水中形成的。尽管 Beelen 等人 争论已发现与潮汐主导的三角洲的沉积亚环境相关的相,三角洲平原和时间等效(7.8-7.25 Ma)近端河流馈线系统的证据尚未记录。 总之,基于问题露头的空间位置和错误数据的使用,我们发现 Beelen 等人提供的观察和解释。不足以挑战目前对研究的沉积物的解释,因为它是由古地中海流出水在深水中形成的。基于露头的空间位置和错误数据的使用问题,我们发现 Beelen 等人提供的观察和解释。不足以挑战目前对研究的沉积物的解释,因为它是由古地中海流出水在深水中形成的。基于露头的空间位置和错误数据的使用问题,我们发现 Beelen 等人提供的观察和解释。不足以挑战目前对研究的沉积物的解释,因为它是由古地中海流出水在深水中形成的。
更新日期:2021-08-29
down
wechat
bug