当前位置: X-MOL 学术J. Photochem. Photobiol. A Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A rhodamine based nanosensor platform for Hg2+ sensing in near–perfect aqueous medium: Smartphone, test strip and real sample applications
Journal of Photochemistry and Photobiology A: Chemistry ( IF 4.3 ) Pub Date : 2021-08-29 , DOI: 10.1016/j.jphotochem.2021.113521
Sukriye Nihan Karuk Elmas 1 , Sinan Dinckan 1, 2 , Fatma Nur Arslan 1 , Duygu Aydin 1 , Tahir Savran 1 , Ibrahim Yilmaz 1
Affiliation  

Herein, a rhodamine based nanosensor platform (RHD–NPs) was designed and prepared for the sensing of Hg2+ in the near–perfect aqueous medium (v/v, 0.01/99.99, acetone/water). The structure, aqueous stability, surface charge and particle size of RHD–NPs were analyzed by using zeta particle sizer, scanning electron microscopy (SEM) and UV–Vis spectrophotometry. The spherical shaped morphology of RHD–NPs has 61.4 nm particule size. The interaction ability of RHD–NPs towards various heavy metal ions was evaluated with UV–Vis and fluorescence spectroscopies. After the transferring of Hg2+ to RHD–NPs, a new absorption band at 562 nm was observed due to the ring–opening mechanism of rhodamine structure. The remarkable emission enhancement at 582 nm was observed through the adding of Hg2+ because of chelation–enhanced fluorescence (CHEF) and aggregation–induced enhanced emission (AIEE) phenomena. RHD–NPs nanosensor system showed good selectivity for Hg2+ monitoring with a nanomolar–level detection limit of 6.56 nM. The binding constant of RHD–NPs with Hg2+ was determined to be 10.06 × 103 M−1 based on the Benesi–Hildebrand graph and a maximum value of Job’s graph was about 0.5 ratio (1:1) between RHD–NPs and Hg2+.The smartphone–based technique revealed an outstanding potential of the RHD–NPs platform for the sensing of Hg2+ without further device. A visual colorimetric strip based on papers with excellent selectivity towards Hg2+ without interfering competition ions, was produced with the white–to–pink color signal change. The RHD–NPs was also employed for the quantitative determination and real–time monitoring of Hg2+ in real samples.



中文翻译:

基于罗丹明的纳米传感器平台,用于近乎完美的水性介质中的 Hg2+ 传感:智能手机、试纸和实际样品应用

在此,设计并制备了一种基于罗丹明的纳米传感器平台(RHD-NPs),用于在近乎完美的水性介质(v/v,0.01/99.99,丙酮/水)中检测 Hg 2+。通过使用 zeta 粒度仪、扫描电子显微镜 (SEM) 和紫外-可见分光光度法分析了 RHD-NPs 的结构、水稳定性、表面电荷和粒径。 RHD-NPs的球形形态 具有 61.4 nm 的粒径。 用紫外-可见光和荧光光谱评估了RHD-NPs对各种重金属离子的相互作用能力。Hg 2+转移到RHD-NPs 之后,由于罗丹明结构的开环机制,在 562 nm 处观察到新的吸收带。由于螯合增强荧光 (CHEF) 和聚集诱导增强发射 (AIEE) 现象,通过添加 Hg 2+观察到 582 nm 处显着的发射增强。RHD-NPs纳米传感器系统对 Hg 2+监测显示出良好的选择性,纳摩尔级检测限为 6.56 nM。基于 Benesi-Hildebrand 图,RHD-NPs与 Hg 2+的结合常数被确定为 10.06 × 10 3 M -1并且 Job's 图的最大值是RHD-NPs和汞2+  .基于智能手机的技术揭示了 RHD-NPs 平台在无需进一步设备的情况下检测 Hg 2+的巨大潜力。基于对 Hg 2+具有出色选择性且不会干扰竞争离子的纸的视觉比色条是由白色到粉红色信号变化产生的。RHD-NPs 还用于定量测定和实时监测实际样品中的 Hg 2+

更新日期:2021-09-15
down
wechat
bug