当前位置: X-MOL 学术Appl. Biochem. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Algal polysaccharide's potential to combat respiratory infections caused by Klebsiella pneumoniae and Serratia marcescens biofilms.
Applied Biochemistry and Biotechnology ( IF 3 ) Pub Date : 2021-08-27 , DOI: 10.1007/s12010-021-03632-7
Jyoti Vishwakarma 1 , Bhumika Waghela 1 , Berness Falcao 1 , Sirisha L Vavilala 1
Affiliation  

The growth of respiratory diseases, as witnessed through the SARS and COVID-19 outbreaks, and antimicrobial-resistance together pose a serious threat to humanity. One reason for antimicrobial resistance is formation of bacterial biofilms. In this study the sulphated polysaccharides from green algae Chlamydomonas reinhardtii (Cr-SPs) is tested for its antibacterial and antibiofilm potential against Klebsiella pneumoniae and Serratia marcescens. Agar cup assay clearly indicated the antibacterial potential of Cr-SPs. Minimum inhibitory concentration (MIC50) of Cr-SPs against Klebsiella pneumoniae was found to be 850 µg/ml, and it is 800 µg/ml in Serratia marcescens. Time-kill and colony-forming ability assays suggest the concentration-dependent bactericidal potential of Cr-SPs. Cr-SPs showed 74-100% decrease in biofilm formation in a concentration-dependent manner by modifying the cell surface hydrophobic properties of these bacteria. Cr-SPs have also distorted preformed-biofilms by their ability to interact and destroy the extra polymeric substance and eDNA of the matured biofilm. Scanning electron microscopy analysis showed that Cr-SPs effectively altered the morphology of these bacterial cells and distorted the bacterial biofilms. Furthermore reduced protease, urease and prodigiosin pigment production suggest that Cr-SPs interferes the quorum sensing mechanism in these bacteria. The current study paves way towards developing Cr-SPs as a control strategy for treatment of respiratory tract infections.

中文翻译:

藻多糖对抗由肺炎克雷伯菌和粘质沙雷氏菌生物膜引起的呼吸道感染的潜力。

正如 SARS 和 COVID-19 爆发所见证的那样,呼吸系统疾病的增长以及抗菌素耐药性共同对人类构成了严重威胁。抗菌素耐药性的一个原因是细菌生物膜的形成。在这项研究中,测试了来自绿藻莱茵衣藻 (Cr-SPs) 的硫酸化多糖对肺炎克雷伯菌和粘质沙雷氏菌的抗菌和抗生物膜潜力。琼脂杯试验清楚地表明了 Cr-SPs 的抗菌潜力。Cr-SPs 对肺炎克雷伯菌的最低抑菌浓度 (MIC50) 为 850 µg/ml,在粘质沙雷氏菌中为 800 µg/ml。时间杀伤和菌落形成能力测定表明 Cr-SPs 具有浓度依赖性杀菌潜力。Cr-SPs 通过改变这些细菌的细胞表面疏水特性,以浓度依赖性方式显示生物膜形成减少 74-100%。Cr-SPs 还通过它们相互作用和破坏成熟生物膜的额外聚合物和 eDNA 的能力扭曲了预形成的生物膜。扫描电子显微镜分析表明,Cr-SPs 有效地改变了这些细菌细胞的形态并扭曲了细菌生物膜。此外,蛋白酶、脲酶和灵菌红素色素产生的减少表明 Cr-SP 干扰了这些细菌的群体感应机制。目前的研究为开发 Cr-SPs 作为治疗呼吸道感染的控制策略铺平了道路。Cr-SPs 还通过它们相互作用和破坏成熟生物膜的额外聚合物和 eDNA 的能力扭曲了预形成的生物膜。扫描电子显微镜分析表明,Cr-SPs 有效地改变了这些细菌细胞的形态并扭曲了细菌生物膜。此外,蛋白酶、脲酶和灵菌红素色素产生的减少表明 Cr-SP 干扰了这些细菌的群体感应机制。目前的研究为开发 Cr-SPs 作为治疗呼吸道感染的控制策略铺平了道路。Cr-SPs 还通过它们相互作用和破坏成熟生物膜的额外聚合物和 eDNA 的能力扭曲了预形成的生物膜。扫描电子显微镜分析表明,Cr-SPs 有效地改变了这些细菌细胞的形态并扭曲了细菌生物膜。此外,蛋白酶、脲酶和灵菌红素色素产生的减少表明 Cr-SP 干扰了这些细菌的群体感应机制。目前的研究为开发 Cr-SPs 作为治疗呼吸道感染的控制策略铺平了道路。此外,蛋白酶、脲酶和灵菌红素色素产生的减少表明 Cr-SP 干扰了这些细菌的群体感应机制。目前的研究为开发 Cr-SPs 作为治疗呼吸道感染的控制策略铺平了道路。此外,蛋白酶、脲酶和灵菌红素色素产生的减少表明 Cr-SP 干扰了这些细菌的群体感应机制。目前的研究为开发 Cr-SPs 作为治疗呼吸道感染的控制策略铺平了道路。
更新日期:2021-08-27
down
wechat
bug