当前位置: X-MOL 学术J. Biomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relating strain fields with microtubule changes in porcine cortical sulci following drop impact
Journal of Biomechanics ( IF 2.4 ) Pub Date : 2021-08-27 , DOI: 10.1016/j.jbiomech.2021.110708
Brendan Hoffe 1 , Ashley Mazurkiewicz 2 , Hannah Thomson 2 , Rohan Banton 3 , Thuvan Piehler 3 , Oren E Petel 2 , Matthew R Holahan 1
Affiliation  

The biomechanical response of brain tissue to strain and the immediate neural outcomes are of fundamental importance in understanding mild traumatic brain injury (mTBI). The sensitivity of neural tissue to dynamic strain events and the resulting strain-induced changes are considered to be a primary factor in injury. Rodent models have been used extensively to investigate impact-induced injury. However, the lissencephalic structure is inconsistent with the human brain, which is gyrencephalic (convoluted structure), and differs considerably in strain field localization effects. Porcine brains have a similar structure to the human brain, containing a similar ratio of white–grey matter and gyrification in the cortex. In this study, coronal brain slabs were extracted from female pig brains within 2hrs of sacrifice. Slabs were implanted with neutral density radiopaque markers, sealed inside an elastomeric encasement, and dropped from 0.9 m onto a steel anvil. Particle tracking revealed elevated tensile strains in the sulcus. One hour after impact, decreased microtubule associated protein 2 (MAP2) was found exclusively within the sulcus with no increase in cell death. These results suggest that elevated tensile strain in the sulcus may result in compromised cytoskeleton, possibly indicating a vulnerability to pathological outcomes under the right circumstances. The results demonstrated that the observed changes were unrelated to shear strain loading of the tissues but were more sensitive to tensile load.



中文翻译:

跌落冲击后猪皮层沟中应变场与微管变化的相关性

脑组织对应变的生物力学反应和直接的神经结果对于理解轻度创伤性脑损伤 (mTBI) 至关重要。神经组织对动态应变事件的敏感性和由此产生的应变引起的变化被认为是损伤的主要因素。啮齿动物模型已被广泛用于研究撞击引起的损伤。然而,lissencephalic 结构与人脑不一致,这是 gyrencephalic(回旋结构),并且在应变场定位效果上有很大差异。猪脑具有与人脑相似的结构,在皮质中包含相似比例的白灰质和回旋化。在这项研究中,在处死后 2 小时内从雌性猪脑中提取冠状脑板。平板被植入中性密度不透射线标记,密封在弹性外壳内,并从 0.9 m 下降到钢砧上。粒子追踪显示沟中拉伸应变升高。撞击后一小时,仅在沟内发现微管相关蛋白 2 (MAP2) 减少,而细胞死亡并未增加。这些结果表明,沟中拉伸应变升高可能会导致细胞骨架受损,这可能表明在适当的情况下对病理结果的脆弱性。结果表明,观察到的变化与组织的剪切应变载荷无关,但对拉伸载荷更敏感。粒子追踪显示沟中拉伸应变升高。撞击后一小时,仅在沟内发现微管相关蛋白 2 (MAP2) 减少,而细胞死亡并未增加。这些结果表明,沟中拉伸应变升高可能会导致细胞骨架受损,这可能表明在适当的情况下对病理结果的脆弱性。结果表明,观察到的变化与组织的剪切应变载荷无关,但对拉伸载荷更敏感。粒子追踪显示沟中拉伸应变升高。撞击后一小时,仅在沟内发现微管相关蛋白 2 (MAP2) 减少,而细胞死亡并未增加。这些结果表明,沟中拉伸应变升高可能会导致细胞骨架受损,这可能表明在适当的情况下对病理结果的脆弱性。结果表明,观察到的变化与组织的剪切应变载荷无关,但对拉伸载荷更敏感。可能表明在正确的情况下对病理结果的脆弱性。结果表明,观察到的变化与组织的剪切应变载荷无关,但对拉伸载荷更敏感。可能表明在正确的情况下对病理结果的脆弱性。结果表明,观察到的变化与组织的剪切应变载荷无关,但对拉伸载荷更敏感。

更新日期:2021-09-04
down
wechat
bug