当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Early diagenesis of sulfur in Bornholm Basin sediments: The role of upward diffusion of isotopically “heavy” sulfide
Geochimica et Cosmochimica Acta ( IF 5 ) Pub Date : 2021-08-25 , DOI: 10.1016/j.gca.2021.08.018
Jiarui Liu 1, 2 , André Pellerin 1, 3 , Gilad Antler 4, 5 , Gareth Izon 6 , Alyssa J. Findlay 1 , Hans Røy 1 , Shuhei Ono 6 , Sabine Kasten 7, 8 , Alexandra V. Turchyn 9 , Bo Barker Jørgensen 1
Affiliation  

Sediment-hosted marine sulfur cycling has played a significant role in regulating Earth’s surface chemistry over our planet’s history. Microbially-mediated reactions involving sulfur are often accompanied by sulfur isotope fractionation that, in turn, is captured by sulfate and sulfide minerals, providing the opportunity to track changes in the microbial utilization of sulfur and thus the marine sulfur cycle. Studying sulfur diagenesis within the Bornholm Basin, Baltic Sea, we explore the interplay between carbon, sulfur and iron, focusing on the fate of sulfur and the dynamics of the sulfur and oxygen isotopic response as a function of the varying thickness of the organic carbon-rich Holocene Mud Layer (HML) across the basin. Using a one-dimensional reaction-transport model, porewater sulfate and sulfide profiles were used to calculate net sulfate reduction rates (SRR) and net sulfide production rates, respectively. These calculations suggest a positive relationship between the thickness of the HML and net rates of sulfate reduction and sulfide production. Given that ascending sulfide is enriched in 34S relative to that produced in-situ, a heightened sulfide flux promotes spatially variable precipitation of 34S-enriched pyrite (δ34S ≈ −10‰) close to the sediment–water interface. Modeling results indicate that this isotopically “heavy” sulfide is formed as a consequence of mixing between ascending sulfide (up to +6.3‰) and that produced in-situ (ca. −40‰). Further, we show that the sulfur and oxygen isotopic composition of porewater sulfate is controlled by the net SRR: when the net SRR is high (i.e., in sulfide-replete settings) the downcore increase in δ18OSO4 is dampened relative to increase in δ34SSO4, whereas when net SRR is low (i.e., in iron-rich parts of the basin) downcore δ18OSO4 values increase while δ34SSO4 values remain invariant. We conclude that sedimentation rates and open system diffusion strongly influence the distribution of sulfur species and their sulfur isotopic composition, as well as the oxygen isotopic composition of sulfate, through the interaction between iron, sulfur and methane. This work highlights the importance of considering diffusion to better understand open system diagenesis and the δ34S signatures of sulfate and sulfide in both modern settings and ancient rocks.



中文翻译:

博恩霍尔姆盆地沉积物中硫的早期成岩作用:同位素“重”硫化物向上扩散的作用

沉积物承载的海洋硫循环在我们星球历史上调节地球表面化学方面发挥了重要作用。涉及硫的微生物介导的反应通常伴随着硫同位素分馏,而硫同位素分馏又被硫酸盐和硫化物矿物捕获,提供了跟踪微生物利用硫的变化以及海洋硫循环的机会。研究波罗的海博恩霍尔姆盆地内的硫成岩作用,我们探索碳、硫和铁之间的相互作用,重点关注硫的归宿以及硫和氧同位素响应的动力学,作为有机碳厚度变化的函数-丰富的全新世泥层 (HML) 横跨盆地。使用一维反应输运模型,孔隙水硫酸盐和硫化物曲线分别用于计算净硫酸盐还原率 (SRR) 和净硫化物产率。这些计算表明 HML 的厚度与硫酸盐还原和硫化物生成的净速率之间存在正相关关系。鉴于上升的硫化物富含34 S 相对于原位生产,更高的硫化物通量促进了34 S 富集黄铁矿(δ 34 S ≈ -10‰)在沉积物 - 水界面附近的空间可变沉淀。建模结果表明,这种同位素“重”硫化物是上升硫化物(高达 +6.3‰)与原位产生的硫化物(约 -40‰)混合的结果。此外,我们表明,孔隙水硫酸盐的硫和氧同位素组成受净 SRR 控制:当净 SRR 高时(即在硫化物充足的环境中),δ 18 O SO4的下核增加相对于δ 34 S SO4,而当净 SRR 较低时(即在盆地的富铁部分),下核 δ 18 O SO4值增加,而 δ 34 S SO4值保持不变。我们得出结论,沉降速率和开放系统扩散通过铁、硫和甲烷之间的相互作用强烈影响硫物质的分布及其硫同位素组成,以及硫酸盐的氧同位素组成。这项工作强调了考虑扩散以更好地了解开放系统成岩作用以及现代环境和古代岩石中硫酸盐和硫化物的 δ 34 S 特征的重要性。

更新日期:2021-08-26
down
wechat
bug