当前位置: X-MOL 学术Phys. Earth Planet. Inter. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-consistent thermodynamic parameters of pyrope and almandine at high-temperature and high-pressure conditions: Implication on the adiabatic temperature gradient
Physics of the Earth and Planetary Interiors ( IF 2.3 ) Pub Date : 2021-08-25 , DOI: 10.1016/j.pepi.2021.106789
Chang Su 1, 2, 3 , Yonggang Liu 2 , Dawei Fan 2 , Wei Song 2 , Guang Yang 4
Affiliation  

Thermodynamic parameters of minerals are valuable quantities in geophysics and petrology, and have been investigated extensively. However, the self-consistent thermodynamic parameters of minerals are limited. Also, of the thermodynamic parameters, the investigations on the variations of thermal expansions, heat capacities, and Grüneisen parameters with pressure are lacking. The goals of this work are to gain the self-consistent thermodynamic parameters and study the behavior of the thermal expansions, heat capacities, and Grüneisen parameters of two important pyralspite garnets, pyrope and almandine, depending on temperature and pressure simultaneously, which are obtained based on a series of classical thermodynamic equations and published experimental data. The results show that the pressure effects on the thermal expansions, heat capacities, and Grüneisen parameters increase along with the temperature for both pyrope and almandine. And the pressure effects on Grüneisen parameters decrease to a minimum at certain temperatures, then increase with temperature slightly. Also, the content of Fe may increase the pressure effects on those thermodynamic parameters of garnets. Moreover, the adiabatic temperature gradients and simplified models of geotherms obtained using the calculated thermodynamic parameters are presented, which indicate that the adiabatic temperature gradient would be moderately enlarged by Fe incorporation. Therefore, ignoring the influence of Fe will underestimate the temperature in the Earth's interior.



中文翻译:

高温高压条件下镁铝榴石和铁铝榴石的自洽热力学参数:对绝热温度梯度的影响

矿物的热力学参数是地球物理学和岩石学中的重要参数,已被广泛研究。然而,矿物的自洽热力学参数是有限的。此外,在热力学参数中,缺乏对热膨胀、热容和 Grüneisen 参数随压力变化的研究。这项工作的目标是获得自洽的热力学参数,并研究两种重要的硅铁榴石石榴石的热膨胀、热容量和 Grüneisen 参数的行为,它们同时取决于温度和压力,这些参数基于关于一系列经典热力学方程和已发表的实验数据。结果表明,压力对热膨胀、热容量、和 Grüneisen 参数随着镁铝榴石和铁铝榴石的温度升高而增加。并且压力对 Grüneisen 参数的影响在某些温度下降至最低,然后随温度略有增加。此外,Fe 的含量可能会增加对石榴石热力学参数的压力影响。此外,还提出了使用计算的热力学参数获得的绝热温度梯度和简化的地热模型,这表明 Fe 掺入会适度扩大绝热温度梯度。因此,忽略Fe的影响会低估地球内部的温度。并且压力对 Grüneisen 参数的影响在某些温度下降至最低,然后随温度略有增加。此外,Fe 的含量可能会增加对石榴石热力学参数的压力影响。此外,还提出了使用计算的热力学参数获得的绝热温度梯度和简化的地热模型,这表明 Fe 掺入会适度扩大绝热温度梯度。因此,忽略Fe的影响会低估地球内部的温度。并且压力对 Grüneisen 参数的影响在某些温度下降至最低,然后随温度略有增加。此外,Fe 的含量可能会增加对石榴石热力学参数的压力影响。此外,还提出了使用计算的热力学参数获得的绝热温度梯度和简化的地热模型,这表明 Fe 掺入会适度扩大绝热温度梯度。因此,忽略Fe的影响会低估地球内部的温度。给出了使用计算的热力学参数获得的绝热温度梯度和简化的地热模型,这表明 Fe 掺入会适度扩大绝热温度梯度。因此,忽略Fe的影响会低估地球内部的温度。给出了使用计算的热力学参数获得的绝热温度梯度和简化的地热模型,这表明绝热温度梯度会因 Fe 掺入而适度扩大。因此,忽略Fe的影响会低估地球内部的温度。

更新日期:2021-08-25
down
wechat
bug