当前位置: X-MOL 学术Extreme Mech. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A printed highly stretchable supercapacitor by a combination of carbon ink and polymer network
Extreme Mechanics Letters ( IF 4.7 ) Pub Date : 2021-08-26 , DOI: 10.1016/j.eml.2021.101459
Chiho Song 1, 2, 3 , Baohong Chen 1 , Jeonguk Hwang 2 , Sujin Lee 2, 3 , Zhigang Suo 1 , Heejoon Ahn 2, 3, 4
Affiliation  

A supercapacitor requires two electronic conductors with large surface areas, separated by an ionic conductor. Here we demonstrate a method to print a highly stretchable supercapacitor. We formulate an ink by mixing graphene flakes and carbon nanotubes with an organic solvent, and use the ink to print two interdigitated electronic conductors on the surface of a dielectric elastomer. We then submerge the printed electronic conductors in an aqueous solution of monomer, photoinitiator, crosslinker, and salt. The organic solvent and water form a binary solvent in which the ions are mobile. Upon UV irradiation, a polymer network forms. In each printed electrode, the graphene flakes and carbon nanotubes form a percolating network, which interpenetrates the polymer network. The electronic and ionic conductors form large interfacial areas. When the supercapacitor is stretched, the graphene flakes and carbon nanotubes slide relative to one another, and the polymer network deforms by entropic elasticity. The polymer network traps individual graphene flakes and carbon nanotubes, so that repeated stretch neither breaks the percolating network nor shorts the two electrodes. The supercapacitor maintains 88% the initial capacitance after 1600 cycles of stretch to five times its initial dimension. The interpenetration of a covalent network of elastic polymer chains and a percolating network of conductive particles is generally applicable for making stretchable ionotronic devices.



中文翻译:

通过碳墨水和聚合物网络的组合印刷的高度可拉伸超级电容器

超级电容器需要两个具有大表面积的电子导体,由离子导体隔开。在这里,我们展示了一种打印高度可拉伸超级电容器的方法。我们通过将石墨烯薄片和碳纳米管与有机溶剂混合来配制墨水,并使用该墨水在介电弹性体的表面上印刷两个相互交叉的电子导体。然后我们将印刷的电子导体浸入单体、光引发剂、交联剂和盐的水溶液中。有机溶剂和水形成二元溶剂,其中离子是可移动的。在紫外线照射下,形成聚合物网络。在每个印刷电极中,石墨烯薄片和碳纳米管形成渗透网络,渗透到聚合物网络中。电子和离子导体形成大的界面区域。当超级电容器被拉伸时,石墨烯薄片和碳纳米管彼此相对滑动,聚合物网络因熵弹性而变形。聚合物网络捕获单个石墨烯薄片和碳纳米管,因此重复拉伸既不会破坏渗透网络也不会使两个电极短路。超级电容器在 1600 次循环拉伸至其初始尺寸的五倍后仍保持初始电容的 88%。弹性聚合物链的共价网络和导电粒子的渗透网络的互穿通常适用于制造可拉伸的离子电子器件。聚合物网络捕获单个石墨烯薄片和碳纳米管,因此重复拉伸既不会破坏渗透网络也不会使两个电极短路。超级电容器在 1600 次循环拉伸至其初始尺寸的五倍后仍保持初始电容的 88%。弹性聚合物链的共价网络和导电粒子的渗透网络的互穿通常适用于制造可拉伸的离子电子器件。聚合物网络捕获单个石墨烯薄片和碳纳米管,因此重复拉伸既不会破坏渗透网络也不会使两个电极短路。超级电容器在 1600 次循环拉伸至其初始尺寸的五倍后仍保持初始电容的 88%。弹性聚合物链的共价网络和导电粒子的渗透网络的互穿通常适用于制造可拉伸的离子电子器件。

更新日期:2021-09-04
down
wechat
bug