当前位置: X-MOL 学术Mol. Biol. Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploiting differential effects of actomyosin contractility to control cell sorting among breast cancer cells
Molecular Biology of the Cell ( IF 3.3 ) Pub Date : 2021-08-25 , DOI: 10.1091/mbc.e21-07-0357
Alexander J Devanny 1 , Michelle B Vancura 1 , Laura J Kaufman 1
Affiliation  

To gain a greater understanding of the factors that drive spatial organization in multicellular aggregates of cancer cells, we investigate the segregation patterns of 6 breast cell lines (MDA-MB-231, MDA-MB-468, MDA-MB-436, MDA-MB-157, ZR-75-1, and MCF-10A) of varying degree of mesenchymal character during formation of mixed aggregates. We consider cell sorting in the context of available adhesion proteins and cellular contractility, biophysical properties that are typically considered in models of cell sorting. We characterize the mechanisms of spheroid formation as being primarily cadherin- or integrin-driven. The primary compaction mediator for a given cell type plays an important role in compaction speed, which in turn is the major factor dictating preference for interior or exterior position within mixed aggregates. In particular, cadherin-deficient, invasion-competent cells tend to position towards the outside of aggregates, facilitating access to extracellular matrix. We show that reducing actomyosin contractility has a differential effect on spheroid formation depending on the compaction mechanism. Inhibition of contractility has a significant stabilizing effect on cell-cell adhesions in integrin-driven aggregation and a mildly destabilizing effect in cadherin-based aggregation. This differential response is exploited as a spheroid formation method and as a method through which to statically control aggregate organization and dynamically rearrange cells in pre-formed aggregates. Sequestration of invasive cells in the interior of spheroids provides a physical barrier that reduces invasion in three-dimensional culture, revealing a potential strategy for containment of invasive cell types.

Movie S1: MDA‐MB‐231 (green) and MCF‐10A (magenta) co‐culture spheroid formed in a low adhesion plate. Images are taken every 10 min for 20 hr.Download Original Video (3.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e21-07-0357/20210824/media/mc-e21-07-0357-s01.,1920,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518b17abb28b8c6166875a97f369b6d543b680497f5bca01d1632f390ebb6e08bd2a2725a70a05738b03ddc7251bffb1206bcd384e738aacf0abe9b4502e102dfa92763a3db1ea5002610ecf69f43934e5cba24a40fcbe675bf4230bca504d5331da5cd7162d50bad6b4bc4d41948acbca311e8aae7b2b0169c54a34f598ed4ec21ee04d425d3a22fca41f2425414f6217ea06e4a9fbd2d4c8c6c3797afeca39b0d82d1f03d585658c988cca07Movie S2: (left) Untreated MDA‐MB‐231 cells allowed to aggregate and imaged every 30 minutes for 30 hours. (right) MDA‐MB‐231 cells treated with 5 μM para‐nitroblebbistatin and imaged under the same conditions. Para‐nitroblebbistatin was used in place of blebbistatin in live‐cell imaging due to poor photostability of and background fluorescence contributed by conventional blebbistatin.Download Original Video (6.6 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e21-07-0357/20210824/media/mc-e21-07-0357-s02.,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c7087751841cabb28b19a3e23570e4794628d00a388fabd4f47061f4b4b81c11dac4c336cd5be6a2a6a495e5def8479aeedf32e6f4ec8f325c8354b92f9a15e63bba6a844857b79b5251ea2f2c474fbd82c1e8d454c53b826950d0cc28f69e69ae9abdc2b78fbe60a332dd16184f8f25d7ceb25204b6eb8dc93bdafe8801dc86f133a921f8616e31e8bfd42ef091b94e129bc8906fb64239e9325e58309ff843daeb76ccc6c168d6cb2ed3Movie S3: MDA‐MB‐231 (magenta) and MDA‐MCF‐157 (green) co‐culture spheroid formed with BME for 24 hours, treated with cell recovery solution for 1 hour, and subsequently treated with 5 μM para‐nitroblebbistatin. Images are taken every 6 hrs for 120 hrs. Para‐nitroblebbistatin was used in place of blebbistatin in live‐cell imaging due to poor photostability of and background fluorescence contributed by conventional blebbistatin.Download Original Video (1.0 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e21-07-0357/20210824/media/mc-e21-07-0357-s03.,1920,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518b17abb28b8c6166875a97f369b6d543b680497f5bca01d1632f390ebb6e08bd2a2725a70a05738b03ddc7251bffb1206bcd384e738aacf0abe9b4502e102dfa92763a3db1ea5002610ecf69f43934e5cba24a40fcbe675bf4230bca504d5331da5cd7162d50bad6b4bc4d419488cbca311e8aae7b51e520541d72c8d095a488806ecba54b9672efcf9db4824b1c5d46cd68c15830182056fa52e5aa092edaef9ec3958249014260eda15e3c


中文翻译:

利用肌动球蛋白收缩性的不同作用来控制乳腺癌细胞的细胞分选

为了更好地了解驱动癌细胞多细胞聚集体空间组织的因素,我们研究了 6 种乳腺细胞系(MDA-MB-231、MDA-MB-468、MDA-MB-436、MDA- MB-157、ZR-75-1 和 MCF-10A)在混合聚集体形成过程中具有不同程度的间充质特征。我们在可用的粘附蛋白和细胞收缩性的背景下考虑细胞分选,这是细胞分选模型中通常考虑的生物物理特性。我们将球体形成的机制描述为主要由钙粘蛋白或整合素驱动。给定细胞类型的主要压实介质在压实速度中起着重要作用,这反过来又是决定混合聚集体内部或外部位置偏好的主要因素。特别是,缺乏钙粘蛋白的侵袭能力强的细胞倾向于定位在聚集体的外部,便于进入细胞外基质。我们表明,根据压实机制,降低肌动球蛋白收缩性对球体形成有不同的影响。抑制收缩性对整合素驱动的聚集中的细胞-细胞粘附具有显着的稳定作用,而在基于钙粘蛋白的聚集中具有轻微的不稳定作用。这种差异响应被用作球体形成方法,并被用作静态控制聚集体组织和动态重新排列预先形成的聚集体中的细胞的方法。在球体内部隔离侵入细胞提供了物理屏障,可减少三维培养中的侵入,

电影 S1: MDA-MB-231(绿色)和 MCF-10A(洋红色)共培养球体在低粘附板上形成。每 10 分钟拍摄一次图像,持续 20 小时。下载原始视频 (3.9 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e21-07-0357/20210824/media/mc-e21-07-0357-s01.,1920,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518b17abb28b8c6166875a97f369b6d543b680497f5bca01d1632f390ebb6e08bd2a2725a70a05738b03ddc7251bffb1206bcd384e738aacf0abe9b4502e102dfa92763a3db1ea5002610ecf69f43934e5cba24a40fcbe675bf4230bca504d5331da5cd7162d50bad6b4bc4d41948acbca311e8aae7b2b0169c54a34f598ed4ec21ee04d425d3a22fca41f2425414f6217ea06e4a9fbd2d4c8c6c3797afeca39b0d82d1f03d585658c988cca07影片 S2:(左)未经处理的 MDA-MB-231 细胞每 30 分钟聚集和成像 30 小时。(右)MDA-MB-231 细胞用 5 μM 对硝基布他汀处理并在相同条件下成像。由于常规 blebbistatin 的光稳定性差和背景荧光差,因此在活细胞成像中使用对硝基blebbistatin 代替 blebbistatin。下载原始视频 (6.6 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e21-07-0357/20210824/media/mc-e21-07-0357-s02.,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c7087751841cabb28b19a3e23570e4794628d00a388fabd4f47061f4b4b81c11dac4c336cd5be6a2a6a495e5def8479aeedf32e6f4ec8f325c8354b92f9a15e63bba6a844857b79b5251ea2f2c474fbd82c1e8d454c53b826950d0cc28f69e69ae9abdc2b78fbe60a332dd16184f8f25d7ceb25204b6eb8dc93bdafe8801dc86f133a921f8616e31e8bfd42ef091b94e129bc8906fb64239e9325e58309ff843daeb76ccc6c168d6cb2ed3影片 S3: MDA-MB-231(洋红色)和 MDA-MCF-157(绿色)与 BME 共培养 24 小时,用细胞回收溶液处理 1 小时,随后用 5 μM 对硝基布他汀处理。每 6 小时拍摄一次图像,持续 120 小时。由于常规 blebbistatin 的光稳定性差和背景荧光差,因此在活细胞成像中使用对硝基blebbistatin 代替 blebbistatin。下载原始视频 (1.0 MB)https://ascb-prod-streaming.literatumonline.com/journals/content/mboc/0/mboc.ahead-of-print/mbc.e21-07-0357/20210824/media/mc-e21-07-0357-s03.,1920,1200,960,900,768,652,642,.mp4.m3u8?b92b4ad1b4f274c70877518b17abb28b8c6166875a97f369b6d543b680497f5bca01d1632f390ebb6e08bd2a2725a70a05738b03ddc7251bffb1206bcd384e738aacf0abe9b4502e102dfa92763a3db1ea5002610ecf69f43934e5cba24a40fcbe675bf4230bca504d5331da5cd7162d50bad6b4bc4d419488cbca311e8aae7b51e520541d72c8d095a488806ecba54b9672efcf9db4824b1c5d46cd68c15830182056fa52e5aa092edaef9ec3958249014260eda15e3c
更新日期:2021-08-26
down
wechat
bug