当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morphology genetic 3D hierarchical SnO2 microstructures constructed by Sub 5 nm nanocrystals for highly sensitive ethanol-sensor
Nanotechnology ( IF 3.5 ) Pub Date : 2021-09-07 , DOI: 10.1088/1361-6528/ac2019
Wenqian Li 1 , Changyu Yan 1 , Yuedan Zhu 1 , Heng Tian 1 , Jinhai Hu 1 , Asma Iqbal 1 , Peisan E 2 , Jiantao Zai 1 , Xuefeng Qian 1
Affiliation  

SnO2 is widely used for ethanol-sensing applications due to its excellent physicochemical properties, low toxicity and high sensitivity. However it is a challenge to construct 3D-hierarchical structures with sub 5 nm primary grain particle, which is the optimized size for ethanol sensor. Herein, genetic tri-level hierarchical SnO2 microstructures are synthesised by the genetic conversion of 3D hierarchical SnS2 flowers assembled by ultrathin nanosheets. The SnS2 nanosheets are morphology genetic converted to porous nanosheets with sub 5 nm SnO2 nanoparticles during the calcination process. When used for the detection of ethanol, the sensor exhibits a high sensitivity of 0.5 ppm (R a/R g=6.8) and excellent gas-sensing response (R a/R g = 183 to 100 ppm) with short response/recovery time (12 s/11 s). The excellent gas sensing performance is much better than that of the previous reported SnO2-based sensors. The highly sensitivity is attributed to the large surface area derived from the recrystallization and volume changes, which offers more active sites during the morphology genetic conversion from SnS2 to SnO2. Furthermore, the flower-like 3D structure enhances the stability of the materials and is beneficial for the mass diffusion dynamics of ethanol.



中文翻译:

由亚 5 nm 纳米晶体构建的用于高灵敏度乙醇传感器的形态学遗传 3D 分层 SnO2 微结构

SnO 2因其优异的理化性质、低毒性和高灵敏度而广泛用于乙醇传感应用。然而,构建具有亚 5 nm 初级颗粒的 3D 分层结构是一项挑战,这是乙醇传感器的优化尺寸。在此,通过超薄纳米片组装的 3D 分层 SnS 2花的遗传转化合成了遗传三级分层 SnO 2微结构。SnS 2纳米片在煅烧过程中通过形态遗传转化为具有亚5 nm SnO 2纳米颗粒的多孔纳米片。当用于检测乙醇时,该传感器具有 0.5 ppm ( R a / R g =6.8) 和出色的气敏响应 ( R a / R g = 183 至 100 ppm),响应/恢复时间短 (12 s/11 s)。出色的气体传感性能比之前报道的基于SnO 2的传感器要好得多。高灵敏度归因于再结晶和体积变化产生的大表面积,这在从 SnS 2到 SnO 2的形态遗传转化过程中提供了更多的活性位点。此外,花朵状的 3D 结构增强了材料的稳定性,有利于乙醇的质量扩散动力学。

更新日期:2021-09-07
down
wechat
bug