当前位置: X-MOL 学术CCS Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bionic Thermosensation Inspired Temperature Gradient Sensor Based on Covalent Organic Framework Nanofluidic Membrane with Ultrahigh Sensitivity
CCS Chemistry ( IF 11.2 ) Pub Date : 2021-08-23 , DOI: 10.31635/ccschem.021.202101125
Weipeng Xian 1 , Pengcheng Zhang 1 , Changjia Zhu 2 , Xiuhui Zuo 1 , Shengqian Ma 2 , Qi Sun 1
Affiliation  

The ability to precisely monitor temperature at a high resolution is an important task, particularly in terms of safety. Inspired by natural thermosensitive transient receptor potential cation channels, we developed a temperature sensor based on thermal-driven ionic charge separation. To mimic the function of nature, an ionic covalent organic framework-based nanofluidic membrane was fabricated. By engineering the membrane to separate two electrolyte solutions, the temperature difference across the membrane can synchronously induce a potential. The high charge density and narrow channel size render extraordinary permselectivity to the membrane, thus offering a thermosensation selectivity of up to 1.25 mV K−1, superior to that of any known natural system. Additionally, the generated potential is linearly related to the introduced temperature gradient, thus allowing for precise detection. With these attributes, an alarm device with high thermosensation sensitivity was constructed, demonstrating great promise for environmental temperature monitoring.



中文翻译:

基于共价有机骨架纳米流体膜的超高灵敏度仿生热传感温度梯度传感器

能够以高分辨率精确监测温度是一项重要任务,尤其是在安全方面。受天然热敏瞬态受体电位阳离子通道的启发,我们开发了一种基于热驱动离子电荷分离的温度传感器。为了模仿自然的功能,制造了一种基于离子共价有机骨架的纳米流体膜。通过设计膜以分离两种电解质溶液,膜上的温差可以同步产生电位。高电荷密度和窄通道尺寸赋予膜非凡的渗透选择性,从而提供高达 1.25 mV K -1的热敏选择性,优于任何已知的自然系统。此外,产生的电位与引入的温度梯度呈线性关系,因此可以进行精确检测。凭借这些特性,构建了一种具有高热敏灵敏度的报警装置,显示出在环境温度监测方面的广阔前景。

更新日期:2021-08-24
down
wechat
bug