当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Controller Design for Maglev Suspension Systems Based on Improved Suspension Force Model
IEEE Transactions on Transportation Electrification ( IF 7 ) Pub Date : 2021-02-09 , DOI: 10.1109/tte.2021.3058137
Fei Ni , Siyuan Mu , Jinsong Kang , Junqi Xu

The electromagnetic suspension-type maglev train can reach ultrahigh-speed using long stator linear synchronous motors; however, slot effect makes the motors suffer from suspension force ripple, since it causes the nonsinusoidal airgap magnetic field distribution. It has been expounded that the suspension electromagnet system is highly nonlinear and unstable in open loops. Additionally, maglev trains experience disturbances and uncertainties in service. Therefore, the robust disturbance-rejection control for electromagnet suspension system is highly necessary to maintain a constant airgap position. In this article, it is intended to propose a novel robust controller for suspension systems which ensures superior system performances despite suspension force ripple, disturbances, and uncertainties while sustaining stable suspension despite system nonlinearity. First, field harmonics are investigated along with slot effects, and an improved nonlinear mathematical model of electromagnetic force is derived. Second, the controller based on the improved force model is formulated. Then, the performance of the designed controller is evaluated on a maglev suspension system with disturbances and uncertainties. Simulation and hardware-in-the-loop experimental results demonstrate that the improved suspension force model is more accurate than the conventional models, and the corresponding controller excels in attenuating larger disturbance without sacrificing tracking performances at different speeds.

中文翻译:

基于改进悬挂力模型的磁悬浮悬挂系统鲁棒控制器设计

电磁悬浮式磁悬浮列车采用长定子直线同步电机可达到超高速;然而,槽效应使电机受到悬浮力纹波的影响,因为它会导致非正弦气隙磁场分布。阐述了悬浮电磁铁系统是高度非线性的,开环不稳定。此外,磁悬浮列车在服务中会遇到干扰和不确定性。因此,电磁悬浮系统的鲁棒抗扰控制对于保持恒定的气隙位置是非常必要的。在本文中,旨在为悬架系统提出一种新颖的鲁棒控制器,尽管悬架力纹波、扰动、尽管系统非线性,但在保持稳定悬挂的同时存在不确定性。首先,研究了场谐波和槽效应,并推导出了改进的电磁力非线性数学模型。其次,制定了基于改进力模型的控制器。然后,在具有扰动和不确定性的磁悬浮悬挂系统上评估设计控制器的性能。仿真和硬件在环实验结果表明,改进后的悬架力模型比传统模型更准确,相应的控制器在衰减较大扰动方面表现出色,且不牺牲不同速度下的跟踪性能。并推导出改进的非线性电磁力数学模型。其次,制定了基于改进力模型的控制器。然后,在具有扰动和不确定性的磁悬浮悬挂系统上评估设计控制器的性能。仿真和硬件在环实验结果表明,改进后的悬架力模型比传统模型更准确,相应的控制器在衰减较大扰动方面表现出色,且不牺牲不同速度下的跟踪性能。并推导出改进的非线性电磁力数学模型。其次,制定了基于改进力模型的控制器。然后,在具有扰动和不确定性的磁悬浮悬挂系统上评估设计控制器的性能。仿真和硬件在环实验结果表明,改进后的悬架力模型比传统模型更准确,相应的控制器在衰减较大扰动方面表现出色,且不牺牲不同速度下的跟踪性能。
更新日期:2021-02-09
down
wechat
bug